scholarly journals Renal cortical hemopexin accumulation in response to acute kidney injury

2012 ◽  
Vol 303 (10) ◽  
pp. F1460-F1472 ◽  
Author(s):  
Richard A. Zager ◽  
Ali C. M. Johnson ◽  
Kirsten Becker

Hemopexin (Hpx) is a liver-generated acute phase reactant that binds and neutralizes prooxidant free heme. This study tested whether acute kidney injury (AKI) triggers renal Hpx accumulation, potentially impacting heme Fe-mediated tubular injury. Mice were subjected to glycerol, cisplatin, ischemia-reperfusion (I/R), or endotoxemic [lipopolysaccharide (LPS)] AKI. In each instance, 3- to 30-fold renal cortical and isolated proximal tubule segment (PTS) Hpx increases resulted. Although renal cortex and PTS showed variable Hpx mRNA increases, due, in part, to increased mRNA stability, mRNA levels did not correlate with renal Hpx protein accumulation. Conversely, AKI evoked three- to fourfold increases in hepatic Hpx gene induction, which corresponded with three- to fourfold plasma Hpx increases. Renal immunohistochemistry, and increased urinary Hpx excretion, indicated that circulating Hpx gains tubule luminal/urinary access, followed by proximal tubule endocytic uptake. Paradoxically, in cultured renal cells (HK-2, HEK-293), Fe depletion, and not free heme excess, increased Hpx mRNA. LPS acutely increased HK-2 cell Hpx mRNA. This finding, coupled with observations that LPS evoked ∼30-fold greater renal Hpx mRNA increases than any other AKI model, suggests that inflammation, not heme exposure, activates the renal Hpx gene. Each form of AKI evoked early increases in circulating free heme, which subsequently fell to subnormal levels as plasma Hpx rose. In addition, purified Hpx blunted free Fe-mediated HK-2 cell death. In sum, these data indicated that AKI-associated hepatic stress generates Hpx, which gains renal tubule access. Given its ability to bind free heme and mitigate free Fe toxicity, Hpx loading can potentially confer cytoprotective effects.

2019 ◽  
Vol 316 (4) ◽  
pp. F674-F681 ◽  
Author(s):  
Richard A. Zager ◽  
Ali C. M. Johnson

The cyclin kinase inhibitor p21 is acutely upregulated during acute kidney injury (AKI) and exerts cytoprotective effects. A proposed mechanism is oxidant stress-induced activation of p53, the dominant p21 transcription factor. Glycerol-induced rhabdomyolysis induces profound renal oxidant stress. Hence, we studied this AKI model to determine whether p53 activation corresponds with p21 gene induction and/or whether alternative mechanism(s) might be involved. CD-1 mice were subjected to glycerol-induced AKI. After 4 or 18 h, plasma, urinary, and renal cortical p21 protein and mRNA levels were assessed. Renal p53 activation was gauged by measurement of both total and activated (Ser15-phosphorylated) p53 and p53 mRNA levels. Glycerol evoked acute, progressive increases in renal cortical p21 mRNA and protein levels. Corresponding plasma (~25-fold) and urinary (~75-fold) p21 elevations were also observed. Renal cortical ratio of total to phosphorylated (Ser15) p53 rose three- to fourfold. However, the p53 inhibitor pifithrin-α failed to block glycerol-induced p21 gene induction, suggesting that an alternative p21 activator might also be at play. To this end, it was established that glycerol-induced AKI 1) dramatically increased plasma (~5-fold) and urinary (~75-fold) cortisol levels, 2) the glucocorticoid receptor antagonist mifepristone blocked glycerol-induced p21 mRNA and protein accumulation, and 3) dexamethasone or cortisol injections markedly increased p21 protein and mRNA in both normal and glycerol-treated mice, although no discernible p53 protein or mRNA increases were observed. We conclude that AKI-induced “systemic stress” markedly increases plasma and urinary cortisol, which can then activate renal p21 gene expression, at least in part, via a glucocorticoid receptor-dependent signaling pathway. Discernible renal cortical p53 increases are not required for this dexamethasone-mediated p21 response.


2012 ◽  
Vol 303 (1) ◽  
pp. F139-F148 ◽  
Author(s):  
Richard A. Zager ◽  
Anitha Vijayan ◽  
Ali C. M. Johnson

Haptoglobin (Hp) synthesis occurs almost exclusively in liver, and it is rapidly upregulated in response to stress. Because many of the pathways that initiate hepatic Hp synthesis are also operative during acute kidney injury (AKI), we tested whether AKI activates the renal cortical Hp gene. CD-1 mice were subjected to six diverse AKI models: ischemia-reperfusion, glycerol injection, cisplatin nephrotoxicity, myoglobinuria, endotoxemia, and bilateral ureteral obstruction. Renal cortical Hp gene induction was determined either 4–72 h or 1–3 wk later by measuring Hp mRNA and protein levels. Relative renal vs. hepatic Hp gene induction during endotoxemia was also assessed. Each form of AKI induced striking and sustained Hp mRNA increases, leading to ∼10- to 100-fold renal Hp protein elevations (ELISA; Western blot). Immunohistochemistry, and isolated proximal tubule assessments, indicated that the proximal tubule was the dominant (if not only) site of the renal Hp increases. Corresponding urinary and plasma Hp elevations were surrogate markers of this response. Endotoxemia evoked 25-fold greater Hp mRNA increases in kidney vs. liver, indicating marked renal Hp gene reactivity. Clinical relevance of these findings was suggested by observations that urine samples from 16 patients with established AKI had statistically higher (∼12×) urinary Hp levels than urine samples from either normal subjects or from 15 patients with chronic kidney disease. These AKI-associated urinary Hp increases mirrored those seen for urinary neutrophil gelatinase-associated lipoprotein, a well accepted AKI biomarker gene. In summary, these studies provide the first evidence that AKI evokes rapid, marked, and sustained induction of the proximal tubule Hp gene. Hp's known antioxidant, as well as its protean pro- and anti-inflammatory, actions imply potentially diverse effects on the evolution of acute tubular injury.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shataakshi Dube ◽  
Tejasvi Matam ◽  
Jessica Yen ◽  
Henry E. Mang ◽  
Pierre C. Dagher ◽  
...  

STAT3 is a transcriptional regulator that plays an important role in coordinating inflammation and immunity. In addition, there is a growing appreciation of the role STAT3 signaling plays in response to organ injury following diverse insults. Acute kidney injury (AKI) from ischemia-reperfusion injury is a common clinical entity with devastating consequences, and the recognition that endothelial alterations contribute to kidney dysfunction in this setting is of growing interest. Consequently, we used a mouse with a genetic deletion of Stat3 restricted to the endothelium to examine the role of STAT3 signaling in the pathophysiology of ischemic AKI. In a mouse model of ischemic AKI, the loss of endothelial STAT3 signaling significantly exacerbated kidney dysfunction, morphologic injury, and proximal tubular oxidative stress. The increased severity of ischemic AKI was associated with more robust endothelial-leukocyte adhesion and increased tissue accumulation of F4/80+ macrophages. Moreover, important proximal tubular adaptive mechanisms to injury were diminished in association with decreased tissue mRNA levels of the epithelial cell survival cytokine IL-22. In aggregate, these findings suggest that the endothelial STAT3 signaling plays an important role in limiting kidney dysfunction in ischemic AKI and that selective pharmacologic activation of endothelial STAT3 signaling could serve as a potential therapeutic target.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Eleni Stamellou ◽  
Mingbo Cheng ◽  
Viktor Sterzer ◽  
Katja Leuchtle ◽  
Thiago Strieder ◽  
...  

Abstract Background and Aims Acute tubular injury accounts for the most common intrinsic cause for acute kidney injury (AKI). The scattered tubular cell (STC) phenotype was discovered as a uniform reaction of tubule cells triggered by injury. Our group was the first to identify an inducible transgenic mouse (PEC-rtTA-mouse) specifically labeling STCs with eGFP. Analysis of the transcriptional factors and associated signaling pathways might reveal the function and role of STCs in AKI. Method Here, we performed single-cell RNA sequencing of unilateral ischemia-reperfusion murine model of AKI 8, 24, 48 hours and 6 and 12 days after AKI induction. Results Genes expressing proximal tubular proteins and transporters were markedly downregulated during transition into the STC phenotype upon injury; but expression recovered over time and upon resolution and tubular cells re-differentiated into proximal tubule cells. This provides evidence for the first time that the STC phenotype is a transient and reversible phenotype triggered by injury. Among cells in the STC phenotype, we could identify 2 sub-clusters; a highly proliferating sub-cluster that in the cell cycle analysis showed the highest proportion of cycling cells. The second eGFP-positive cluster appeared very early after AKI and expressed a distinct set of genes (defined by 7 anchor genes). Some of the highly up-regulated genes are known markers of STCs hence confirming the specificity of our transgenic mouse line. Conclusion Our study provides gene expression patterns specifically in STCs upon injury and repair at multiple time points and suggests that the STC phenotype is a transient and reversible phenotype triggered by injury.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Faihaa Ahmed ◽  
Jean-Marie Mwiza ◽  
Mizpha Fernander ◽  
Shaymaa Abousaad ◽  
Elimelda Moige Ongeri

2019 ◽  
Vol 316 (6) ◽  
pp. F1201-F1210 ◽  
Author(s):  
Josselin Nespoux ◽  
Rohit Patel ◽  
Kelly L. Hudkins ◽  
Winnie Huang ◽  
Brent Freeman ◽  
...  

Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice ( Sglt1−/−) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1−/− mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1−/− versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters ( Sglt2 and Na+-K+-2Cl– cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1−/− versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.


2012 ◽  
Vol 303 (5) ◽  
pp. F721-F732 ◽  
Author(s):  
Sang Won Park ◽  
Joo Yun Kim ◽  
Ahrom Ham ◽  
Kevin M. Brown ◽  
Mihwa Kim ◽  
...  

Activation of A1 adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A1AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A1AR (PD-81723) protects against renal I/R injury without the undesirable side effects of systemic A1AR activation by potentiating the cytoprotective effects of renal adenosine generated locally by ischemia. Pretreatment with PD-81723 produced dose-dependent protection against renal I/R injury in A1AR wild-type mice but not in A1AR-deficient mice. Significant reductions in renal tubular necrosis, neutrophil infiltration, and inflammation as well as tubular apoptosis were observed in A1AR wild-type mice treated with PD-81723. Furthermore, PD-81723 decreased apoptotic cell death in human proximal tubule (HK-2) cells in culture, which was attenuated by a specific A1AR antagonist (8-cyclopentyl-1,3-dipropylxanthine). Mechanistically, PD-81723 induced sphingosine kinase (SK)1 mRNA and protein expression in HK-2 cells and in the mouse kidney. Supporting a critical role of SK1 in A1AR allosteric enhancer-mediated renal protection against renal I/R injury, PD-81723 failed to protect SK1-deficient mice against renal I/R injury. Finally, proximal tubule sphingosine-1-phosphate type 1 receptors (S1P1Rs) are critical for PD-81723-induced renal protection, as mice selectively deficient in renal proximal tubule S1P1Rs (S1P1Rflox/flox PEPCKCre/− mice) were not protected against renal I/R injury with PD-81723 treatment. Taken together, our experiments demonstrate potent renal protection with PD-81723 against I/R injury by reducing necrosis, inflammation, and apoptosis through the induction of renal tubular SK1 and activation of proximal tubule S1P1Rs. Our findings imply that selectively enhancing A1AR activation by locally produced renal adenosine may be a clinically useful therapeutic option to attenuate ischemic acute kidney injury without systemic side effects.


2021 ◽  
Vol 118 (27) ◽  
pp. e2026684118
Author(s):  
Louisa M. S. Gerhardt ◽  
Jing Liu ◽  
Kari Koppitch ◽  
Pietro E. Cippà ◽  
Andrew P. McMahon

Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at a late injury stage distinguished by marked activation of NF-κB–, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.


2011 ◽  
Vol 300 (3) ◽  
pp. F628-F638 ◽  
Author(s):  
Lorraine B. Ware ◽  
Ali C. M. Johnson ◽  
Richard A. Zager

This study evaluated the potential utility of albuminuria as a “biomarker” of acute kidney injury (AKI) and tested whether AKI induces renal expression of the normally silent albumin gene. Urine albumin concentrations were measured in mice with five different AKI models (maleate, ischemia-reperfusion, rhabdomyolysis, endotoxemia, ureteral obstruction). Albumin gene induction in renal cortex, and in antimycin A-injured cultured proximal tubular cells, was assessed (mRNA levels; RNA polymerase II binding to the albumin gene). Albumin's clinical performance as an AKI biomarker was also tested (29 APACHE II-matched intensive care unit patients with and without AKI). Results were contrasted to those obtained for neutrophil gelatinase-associated lipocalin (NGAL), an established “AKI biomarker” gene. The experimental and clinical assessments indicated albumin's equivalence to NGAL as an AKI biomarker (greater specificity in experimental AKI; slightly better receiver-operating curve in humans). Furthermore, experimental AKI markedly induced the albumin gene (mRNA/RNA polymerase II binding increases; comparable to those seen for NGAL). Albumin gene activation in patients with AKI was suggested by fivefold increases in RNA polymerase II binding to urinary fragments of the albumin gene (vs. AKI controls). Experimental AKI also increased renal cortical mRNA levels for α-fetoprotein (albumin's embryonic equivalent). A correlate in patients was increased urinary α-fetoprotein excretion. We conclude that AKI can unmask, in the kidney, the normally silent renal albumin and α-fetoprotein genes. In addition, the urinary protein data independently indicate that albuminuria, and perhaps α-fetoprotein, have substantial utility as biomarkers of acute tubular injury.


Sign in / Sign up

Export Citation Format

Share Document