scholarly journals Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury

2021 ◽  
Vol 118 (27) ◽  
pp. e2026684118
Author(s):  
Louisa M. S. Gerhardt ◽  
Jing Liu ◽  
Kari Koppitch ◽  
Pietro E. Cippà ◽  
Andrew P. McMahon

Acute kidney injury (AKI), commonly caused by ischemia, sepsis, or nephrotoxic insult, is associated with increased mortality and a heightened risk of chronic kidney disease (CKD). AKI results in the dysfunction or death of proximal tubule cells (PTCs), triggering a poorly understood autologous cellular repair program. Defective repair associates with a long-term transition to CKD. We performed a mild-to-moderate ischemia–reperfusion injury (IRI) to model injury responses reflective of kidney injury in a variety of clinical settings, including kidney transplant surgery. Single-nucleus RNA sequencing of genetically labeled injured PTCs at 7-d (“early”) and 28-d (“late”) time points post-IRI identified specific gene and pathway activity in the injury–repair transition. In particular, we identified Vcam1+/Ccl2+ PTCs at a late injury stage distinguished by marked activation of NF-κB–, TNF-, and AP-1–signaling pathways. This population of PTCs showed features of a senescence-associated secretory phenotype but did not exhibit G2/M cell cycle arrest, distinct from other reports of maladaptive PTCs following kidney injury. Fate-mapping experiments identified spatially and temporally distinct origins for these cells. At the cortico-medullary boundary (CMB), where injury initiates, the majority of Vcam1+/Ccl2+ PTCs arose from early replicating PTCs. In contrast, in cortical regions, only a subset of Vcam1+/Ccl2+ PTCs could be traced to early repairing cells, suggesting late-arising sites of secondary PTC injury. Together, these data indicate even moderate IRI is associated with a lasting injury, which spreads from the CMB to cortical regions. Remaining failed-repair PTCs are likely triggers for chronic disease progression.

2017 ◽  
Vol 37 (22) ◽  
Author(s):  
Lei Yu ◽  
Takashi Moriguchi ◽  
Hiroshi Kaneko ◽  
Makiko Hayashi ◽  
Atsushi Hasegawa ◽  
...  

ABSTRACT Acute kidney injury (AKI) is a leading cause of chronic kidney disease. Proximal tubules are considered to be the primary origin of pathogenic inflammatory cytokines in AKI. However, it remains unclear whether other cell types, including collecting duct (CD) cells, participate in inflammatory processes. The transcription factor GATA2 is specifically expressed in CD cells and maintains their cellular identity. To explore the pathophysiological function of GATA2 in AKI, we generated renal tubular cell-specific Gata2 deletion (G2CKO) mice and examined their susceptibility to ischemia reperfusion injury (IRI). Notably, G2CKO mice exhibited less severe kidney damage, with reduced granulomacrophagic infiltration upon IRI. Transcriptome analysis revealed that a series of inflammatory cytokine genes were downregulated in GATA2-deficient CD cells, suggesting that GATA2 induces inflammatory cytokine expression in diseased kidney CD cells. Through high-throughput chemical library screening, we identified a potent GATA inhibitor. The chemical reduces cytokine production in CD cells and protects the mouse kidney from IRI. These results revealed a novel pathological mechanism of renal IRI, namely, that CD cells produce inflammatory cytokines and promote IRI progression. In injured kidney CD cells, GATA2 exerts a proinflammatory function by upregulating inflammatory cytokine gene expression. GATA2 can therefore be considered a therapeutic target for AKI.


Author(s):  
Razvan Andrei CODEA ◽  
Mircea MIRCEAN ◽  
Sidonia Alina BOGDAN ◽  
Andras Laszlo NAGY ◽  
Alexandra BIRIS ◽  
...  

The identification of a suitable prevention method which facilitates limiting the deleterious effects of acute kidney injuries is highly required. In order to identify a proper treatment for acute kidney injuries, a suitable experimental model that replicates the structural, metabolic and inflammatory lesions that occur in the natural acute injured kidney is highly necessary. Intense urinary NAG activity can be found in a variety of renal disease such as toxic nephropathies, ischemic renal injury following cardiac surgery or renal transplantation but also in glomerular disease especially in diabetic nephropathy. Rises in urinary NAG enzyme activity strongly suggests tubular cell damage and support NAG enzyme as a biomarker of renal tubular injury. The aim of this paper is to obtain a stable in vivo acute kidney injury experimental model, in Wistar, rats and to evaluate the urinary activity of N-acetyl-β-D-glucosaminidase (NAG) enzyme, blood levels of urea and creatinine and microstructural renal alterations induced by ischemia/reperfusion injury respectively gentamicin nephrotoxicity. For this purpose we have used a rat experimental model. Adult male Wistar rats weighing 250-300 g were randomly divided into 3 groups with 8 rats in each group. Group 1 served as a model for the renal ischemia/reperfusion injury experiment, group 2 served for toxic kidney injury experimental model and group 3 served as control group. All individuals in both groups 1 and 2 presented marked elevations in blood urea and creatinine at the moment of euthanasia (day 3 for group 1 and day 9 for group 2) compared to the control group where biochemical values remained within normal limits. Urine analysis of both group 1 and 2 showed marked urinary NAG index activity which suggests acute tubular injury, suggestion confirmed by histological evaluation of the renal parenchyma sampled from this subjects


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julia Wilflingseder ◽  
Michaela Willi ◽  
Hye Kyung Lee ◽  
Hannes Olauson ◽  
Jakub Jankowsky ◽  
...  

Abstract Background and Aims The endogenous repair process of the mammalian kidney allows rapid recovery after acute kidney injury (AKI) through robust proliferation of tubular epithelial cells. There is currently limited understanding of which transcriptional regulators activate these repair programs and how transcriptional dysregulation leads to maladaptive repair. Here we investigate the existence of enhancer dynamics in the regenerating mouse kidney. Method RNA-seq and ChIP-seq (H3K27ac, H3K4m3, BRD4, POL2 and selected transcription factors) were performed on samples from repairing kidney cortex 2 days after ischemia/reperfusion injury (IRI) to identify activated genes, transcription factors, enhancer and super-enhancers associated with kidney repair. Further we investigated the role of super-enhancer activation in kidney repair through pharmacological BET inhibition using the small molecule JQ1 in vitro and in acute kidney injury models in vivo. Results Response to kidney injury leads to genome-wide alteration in enhancer repertoire in-vivo. We identified 16,781 enhancer sites (H3K27ac and BRD4 positive, H3K4me3 negative binding) active in SHAM and IRI samples; 6,512 lost and 9,774 gained after IRI. The lost and gained enhancer sites can be annotated to 62% and 63% of down- and up-regulated transcripts at day 2 after kidney injury, respectively. Super-enhancer analysis revealed 164 lost and 216 gained super-enhancer sites at IRI day 2. 385 super-enhancers maintain activity before and after injury. ChIP-seq profiles of selected transcription factors based on motif analysis show specific binding at corresponding enhancer sites. We observed lost enhancer binding of HNF4A and GR mainly at kidney related enhancer elements. In contrast, STAT3 showed increased binding at injury induces enhancer elements. No dynamic was observed for STAT5. Both transcription factor groups show corresponding mRNA changes after injury. Pharmacological inhibition of enhancer and super-enhancer activity by BRD4 inhibition (JQ1: 50mg/kg/day) before IRI leads to suppression of 40% of injury-induced transcripts associated with cell cycle regulation and significantly increased mortality between days 2 and 3 after AKI. Conclusion This is the first demonstration of enhancer and super-enhancer function in the repairing kidney. In addition, our data call attention to potential caveats for use of small molecule inhibitors of BET proteins that are currently being tested in clinical trials in cancer patients who are at risk for AKI. Our analyses of enhancer dynamics after kidney injury in vivo have the potential to identify new targets for therapeutic intervention.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Johanna Störmer ◽  
Faikah Gueler ◽  
Song Rong ◽  
Mi-Sun Jang ◽  
Nelli Shushakova ◽  
...  

Abstract Background and Aims Diclofenac is frequently used for pain control. In a previous study, we showed that already a single oral dose of diclofenac could reduce renal perfusion in healthy individuals. To investigate the influence of oral diclofenac administration on renal inflammation in the setting of pre-existing renal damage, we used a mouse model of subclinical acute kidney injury (AKI) induced by renal ischemia-reperfusion injury (IRI) followed by diclofenac administration. Method Male CD1 mice (7-8 weeks old) underwent unilateral renal pedicle clamping for 15min to induce subclinical AKI. After reperfusion mice received a single oral dose of 100 or 200mg/kg diclofenac via oral gavage. Vehicle treated mice with unilateral IRI served as control. At day 1, mice were placed into metabolic cages to collect urine. Histology was performed on day 1 and 14 for renal morphology. Inflammation and fibrosis were investigated by immunohistochemistry and qPCR. Results Diclofenac treated mice showed reduced urine production. Morphologically, signs of AKI were more pronounced in diclofenac treated kidneys which also showed more Cox-2 positive tubuli in the cortex. On mRNA expression level the pro-inflammatory markers IL-6 and CXCL2, the chemoattractant for neutrophils, were elevated in the diclofenac group. Early upregulation of the pro-fibrotic markers CTGF and PAI-1 was detected already on d1 after IRI in the diclofenac group and tubular atrophy was pronounced after two weeks. Conclusion Already, a single oral dose of diclofenac causes aggravation of renal inflammation and progressive renal fibrosis in the setting of pre-existing subclinical acute kidney injury.


2019 ◽  
Vol 30 (12) ◽  
pp. 2370-2383 ◽  
Author(s):  
Eirini Kefaloyianni ◽  
Manikanda Raja Keerthi Raja ◽  
Julian Schumacher ◽  
Muthu Lakshmi Muthu ◽  
Vaishali Krishnadoss ◽  
...  

BackgroundSustained activation of EGF receptor (EGFR) in proximal tubule cells is a hallmark of progressive kidney fibrosis after AKI and in CKD. However, the molecular mechanisms and particular EGFR ligands involved are unknown.MethodsWe studied EGFR activation in proximal tubule cells and primary tubular cells isolated from injured kidneys in vitro. To determine in vivo the role of amphiregulin, a low-affinity EGFR ligand that is highly upregulated with injury, we used ischemia-reperfusion injury or unilateral ureteral obstruction in mice with proximal tubule cell–specific knockout of amphiregulin. We also injected soluble amphiregulin into knockout mice with proximal tubule cell–specific deletion of amphiregulin’s releasing enzyme, the transmembrane cell-surface metalloprotease, a disintegrin and metalloprotease-17 (ADAM17), and into ADAM17 hypomorphic mice.ResultsYes-associated protein 1 (YAP1)–dependent upregulation of amphiregulin transcript and protein amplifies amphiregulin signaling in a positive feedback loop. YAP1 also integrates signals of other moderately injury-upregulated, low-affinity EGFR ligands (epiregulin, epigen, TGFα), which also require soluble amphiregulin and YAP1 to induce sustained EGFR activation in proximal tubule cells in vitro. In vivo, soluble amphiregulin injection sufficed to reverse protection from fibrosis after ischemia-reperfusion injury in ADAM17 hypomorphic mice; injected soluble amphiregulin also reversed the corresponding protective proximal tubule cell phenotype in injured proximal tubule cell–specific ADAM17 knockout mice. Moreover, the finding that proximal tubule cell–specific amphiregulin knockout mice were protected from fibrosis after ischemia-reperfusion injury or unilateral ureteral obstruction demonstrates that amphiregulin was necessary for the development of fibrosis.ConclusionsOur results identify amphiregulin as a key player in injury-induced kidney fibrosis and suggest therapeutic or diagnostic applications of soluble amphiregulin in kidney disease.


2015 ◽  
Vol 309 (10) ◽  
pp. F852-F863 ◽  
Author(s):  
Sara Hirsch ◽  
Tarek El-Achkar ◽  
Lynn Robbins ◽  
Jeannine Basta ◽  
Monique Heitmeier ◽  
...  

It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS ( Sall1 TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1 TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1 TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1 TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1 TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury.


Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 48 ◽  
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Georgia Antoniadi ◽  
Vassilios Liakopoulos ◽  
Ioannis Stefanidis

Ischemia–reperfusion injury contributes to the pathogenesis of many diseases, with acute kidney injury included. Hibernating mammals survive prolonged bouts of deep torpor with a dramatic drop in blood pressure, heart, and breathing rates, interspersed with short periods of arousal and, consequently, ischemia–reperfusion injury. Clarifying the differences under warm anoxia or reoxygenation between human cells and cells from a native hibernator may reveal interventions for rendering human cells resistant to ischemia–reperfusion injury. Human and hamster renal proximal tubular epithelial cells (RPTECs) were cultured under warm anoxia or reoxygenation. Mouse RPTECs were used as a phylogenetic control for hamster cells. Cell death was assessed by both cell imaging and lactate dehydrogenase (LDH) release assay, apoptosis by cleaved caspase-3, autophagy by microtubule-associated protein 1-light chain 3 B II (LC3B-II) to LC3B-I ratio, necroptosis by phosphorylated mixed-lineage kinase domain-like pseudokinase, reactive oxygen species (ROS) fluorometrically, and lipid peroxidation, the end-point of ferroptosis, by malondialdehyde. Human cells died after short periods of warm anoxia or reoxygenation, whereas hamster cells were extremely resistant. In human cells, apoptosis contributed to cell death under both anoxia and reoxygenation. Although under reoxygenation, ROS increased in both human and hamster RPTECs, lipid peroxidation-induced cell death was detected only in human cells. Autophagy was observed only in human cells under both conditions. Necroptosis was not detected in any of the evaluated cells. Clarifying the ways that are responsible for hamster RPTECs escaping from apoptosis and lipid peroxidation-induced cell death may reveal interventions for preventing ischemia–reperfusion-induced acute kidney injury in humans.


2012 ◽  
Vol 303 (1) ◽  
pp. F139-F148 ◽  
Author(s):  
Richard A. Zager ◽  
Anitha Vijayan ◽  
Ali C. M. Johnson

Haptoglobin (Hp) synthesis occurs almost exclusively in liver, and it is rapidly upregulated in response to stress. Because many of the pathways that initiate hepatic Hp synthesis are also operative during acute kidney injury (AKI), we tested whether AKI activates the renal cortical Hp gene. CD-1 mice were subjected to six diverse AKI models: ischemia-reperfusion, glycerol injection, cisplatin nephrotoxicity, myoglobinuria, endotoxemia, and bilateral ureteral obstruction. Renal cortical Hp gene induction was determined either 4–72 h or 1–3 wk later by measuring Hp mRNA and protein levels. Relative renal vs. hepatic Hp gene induction during endotoxemia was also assessed. Each form of AKI induced striking and sustained Hp mRNA increases, leading to ∼10- to 100-fold renal Hp protein elevations (ELISA; Western blot). Immunohistochemistry, and isolated proximal tubule assessments, indicated that the proximal tubule was the dominant (if not only) site of the renal Hp increases. Corresponding urinary and plasma Hp elevations were surrogate markers of this response. Endotoxemia evoked 25-fold greater Hp mRNA increases in kidney vs. liver, indicating marked renal Hp gene reactivity. Clinical relevance of these findings was suggested by observations that urine samples from 16 patients with established AKI had statistically higher (∼12×) urinary Hp levels than urine samples from either normal subjects or from 15 patients with chronic kidney disease. These AKI-associated urinary Hp increases mirrored those seen for urinary neutrophil gelatinase-associated lipoprotein, a well accepted AKI biomarker gene. In summary, these studies provide the first evidence that AKI evokes rapid, marked, and sustained induction of the proximal tubule Hp gene. Hp's known antioxidant, as well as its protean pro- and anti-inflammatory, actions imply potentially diverse effects on the evolution of acute tubular injury.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shataakshi Dube ◽  
Tejasvi Matam ◽  
Jessica Yen ◽  
Henry E. Mang ◽  
Pierre C. Dagher ◽  
...  

STAT3 is a transcriptional regulator that plays an important role in coordinating inflammation and immunity. In addition, there is a growing appreciation of the role STAT3 signaling plays in response to organ injury following diverse insults. Acute kidney injury (AKI) from ischemia-reperfusion injury is a common clinical entity with devastating consequences, and the recognition that endothelial alterations contribute to kidney dysfunction in this setting is of growing interest. Consequently, we used a mouse with a genetic deletion of Stat3 restricted to the endothelium to examine the role of STAT3 signaling in the pathophysiology of ischemic AKI. In a mouse model of ischemic AKI, the loss of endothelial STAT3 signaling significantly exacerbated kidney dysfunction, morphologic injury, and proximal tubular oxidative stress. The increased severity of ischemic AKI was associated with more robust endothelial-leukocyte adhesion and increased tissue accumulation of F4/80+ macrophages. Moreover, important proximal tubular adaptive mechanisms to injury were diminished in association with decreased tissue mRNA levels of the epithelial cell survival cytokine IL-22. In aggregate, these findings suggest that the endothelial STAT3 signaling plays an important role in limiting kidney dysfunction in ischemic AKI and that selective pharmacologic activation of endothelial STAT3 signaling could serve as a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document