Effect of furosemide on thoracic duct lymph flow in the dog

1980 ◽  
Vol 238 (5) ◽  
pp. F363-F371 ◽  
Author(s):  
C. McCaffrey ◽  
M. Levy

Furosemide 20 mg/kg was given intravenously to 12 anesthetized dogs with clamped renal pedicles. Thoracic duct lymph flow (TDLF) increased promptly by 38% (P less than 0.05), an increment that lasted 80 min. Because in 6 of 12 dogs there was a transient increase in splanchnic blood flow, in separate groups splanchnic blood flow was either markedly constricted or markedly increased by intravenous isoproterenol. Thoracic duct lymph flow increased by 95 and 90%, respectively, following furosemid despite no further change in splanchnic blood flow. Furosemide had no effect on blood pressure, lymph protein, or plasma sodium. In four chronic caval dogs, TDLF was increased by 400%, yet furosemide produced a further increment in lymph flow of 30% (P less than 0.05). Infusion of a 25% albumin solution to contract the interstitial fluid did not abolish the furosemide effect, but a 10% mannitol solution did. Furosemide increased TDLF even after the infusion of papaverine reduced blood pressure to 60 mmHg. We conclude that furosemide increases TDLF by acting directly on splanchnic capillaries to allow increased filtration of fluid in the absence of increased splanchnic blood flow or capillary hydrostatic pressure.

1987 ◽  
Vol 252 (6) ◽  
pp. R1114-R1118 ◽  
Author(s):  
G. J. Valenzuela ◽  
R. A. Brace ◽  
L. D. Longo

Estrogen administration produces blood volume expansion and interstitial fluid retention. We decided to study the effect of estrogen withdrawal on blood volume and determine whether oophorectomy has an effect on lymph flow or protein concentration. The rate of left thoracic duct lymph flow averaged 0.041 +/- 0.005 (SE) and 0.071 +/- 0.008 ml X min-1 X kg-1 in castrated (n = 9) and noncastrated (n = 9) female sheep, respectively (P = 0.006). After three serial intravenous infusions of Ringer lactate solution (2% body wt/infusion) the thoracic duct lymph flow in the castrated animals increased 358, 457, and 498% over the base-line rate, compared with increase of 200, 235, and 353% in the nonpregnant ewes. However, with the lower control values in the castrated animals, the lymph flow rate reached the same absolute values as those seen in the noncastrated ewes. Lymph protein concentration and the lymph-to-plasma protein concentration ratio, as well as arterial and venous pressures, were unaltered by oophorectomy. Base-line whole blood volumes were 58.2 +/- 1.9 (n = 9) and 64.8 +/- 2.6 ml/kg (n = 9) in the castrated and noncastrated ewes, respectively (P less than 0.05). Systemic vascular compliance averaged 4.5 +/- 0.7 and 7.1 +/- 1.7 ml X kg-1 X mmHg-1 in the castrated and noncastrated ewes, respectively (P less than 0.05), whereas interstitial fluid compliance values were 12 and 32 ml X kg-1 X mmHg-1, respectively. The capillary filtration coefficients were not different in the two groups.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 145 (1) ◽  
pp. 126-130 ◽  
Author(s):  
Michael Last ◽  
Lewis Kurtz ◽  
Theodore A. Stein ◽  
Leslie Wise

1989 ◽  
Vol 256 (1) ◽  
pp. H16-H20 ◽  
Author(s):  
R. A. Brace

A method was developed for chronic catheterization of the left thoracic lymph duct at the base of the neck in the sheep fetus, which did not disrupt the other major lymphatic vessels that join the venous circulation at the same location. The lymphatic catheter was connected to a catheter in a jugular vein when lymph flow was not being recorded, so that the lymph continuously returned to the fetal circulation. Special consideration of catheter size to minimize flow resistance and treatment to prevent clotting were required. Individual animals were maintained up to 17 days with lymph flow continuing. In 13 fetuses averaging 128 days gestation (term = 147 days) at the time of catheterization, lymph flow rate was measured for 1 h each day for the first 7 postsurgical days with an on-line computer technique that continuously calculated lymph flow rate. Lymph flow averaged 0.64 +/- 0.17 (SD) ml/min in fetuses weighing 2.3-4 kg and tended to undergo a nonsignificant increase with time. Lymph and plasma protein concentrations did not change with time. In individual fetuses, large spontaneous variations in lymph flow rate occurred over periods of several seconds to a few minutes. Analysis showed that these variations in flow rate were not associated with fetal breathing movements. Thus the present study describes a technique for studying the dynamics of lymph flow in the unanesthetized sheep fetus in utero over a time period limited primarily by the length of gestation. In addition, it appears that thoracic duct lymph flow rate in the fetus per unit body weight averages three to four times that in the adult.


1957 ◽  
Vol 189 (3) ◽  
pp. 576-579 ◽  
Author(s):  
E. Allbaugh Farrand ◽  
R. Larsen ◽  
Steven M. Horvath

The changes in splanchnic blood flow and related metabolic functions which occurred as the result of the infusion of 0.1 µg/kg/min. of l-epinephrine and l-norepinephrine for 10 minutes were measured in anesthetized dogs. l-Epinephrine elicited a marked increase in estimated splanchnic blood flow and no change in mean arterial pressure. While a significantly increased mean arterial blood pressure was observed following the administration of l-norepinephrine, no change in estimated splanchnic blood flow occurred. Arterial oxygen content was increased significantly with both drugs. Utilization of oxygen by the splanchnic bed was not changed during the infusion of either drug but was increased during the postepinephrine infusion period.


1990 ◽  
Vol 259 (6) ◽  
pp. R1205-R1213 ◽  
Author(s):  
J. Valenzuela-Rendon ◽  
R. D. Manning

The roles of the transvascular fluid flux and lymph flow in the distribution of extracellular fluid volume during angiotensin II (ANG II) hypertension were evaluated in 11 conscious dogs. Similarly, the factors regulating the distribution of plasma protein across the microvasculature were assessed. By the second day of ANG II infusion, the thoracic duct lymph flow had increased 58% above control, transcapillary fluid flux had increased 45%, and plasma volume, sulfate space, and interstitial fluid volume remained close to control. In addition, the thoracic duct lymph protein transport had increased 34%, and the accompanying increase in transcapillary protein flux prevented any change in plasma protein mass. Also, at this time, the lymph flow and protein transport from subcutaneous tissue in the hind limb were not increased, and the permeability-surface area product of this region decreased 40%. The origin of the increased thoracic duct lymph flow on day 2 probably was from the splanchnic bed. In conclusion, the increased lymph flow during ANG II hypertension compensated for the increase in transcapillary fluid flux, thus preventing edema formation.


1965 ◽  
Vol 208 (6) ◽  
pp. 1243-1246 ◽  
Author(s):  
D. A. Evans ◽  
R. A. F. Garnett ◽  
J. M. Yoffey

Thoracic duct lymph flow and lymphocytes were first studied in 18 normal guinea pigs. Similar studies were then made on a) 25 guinea pigs placed in a decompression chamber at a simulated altitude of 14,000 ft for times ranging from 1 to 5 days, this being the period of "primary hypoxia" during which erythropoiesis is stimulated and polycythemia develops, and b) 25 guinea pigs exposed to primary hypoxia for 5 days, then kept in room air for times ranging from 1 to 5 days, this period of posthypoxic polycythemia being known as "rebound." By the end of rebound the polycythemia had almost disappeared. The flow of thoracic duct lymph increased significantly from a control level of 0.86 ± 0.21 ml/hr to 1.23 ± 0.1 ml/hr by the 5th day of primary hypoxia, and to a peak of 1.89 ± 0.23 ml/hr by the 3rd day of rebound, falling slightly to 1.56 ± 0.14 ml/hr by the 5th day of rebound, when it was still markedly above control level. The total cell content of the lymph also rose significantly, from 34.5 ± 10.3 x 106 lymphocytes/hr in the control animal to 59.1 ± 8.9 x 106 /hr on the 5th day of primary hypoxia, and to a peak of 93.8 ± 23.0 x 106 on the 3rd day of rebound.


Sign in / Sign up

Export Citation Format

Share Document