Monoaminergic innervation of the rat kidney: a quantitative study

1990 ◽  
Vol 259 (3) ◽  
pp. F503-F511 ◽  
Author(s):  
L. Barajas ◽  
K. Powers

The sympathetic innervation of the renal tubules and vasculature was characterized by measuring the overlap of accumulations of autoradiographic grains (AAGs) on these structures in autoradiograms of kidney sections from rats injected with tritiated norepinephrine. AAG overlap was used as an indirect measure of the innervation of those structures. The renal vasculature showed x 4.5 more AAG overlap than observed on renal tubules. The greatest amount of AAG overlap occurred on afferent arterioles, followed by efferent arterioles, interlobular arteries, cortical capillaries, arcuate arteries, and renal veins. High concentration of AAGs occurred along the vascular bundles of the outer stripe. In the tubular nephron the proximal tubule had the greatest amount of AAG overlap, followed by the cortical thick ascending limb of Henle, the connecting tubule, the distal convoluted tubule, and the collecting duct. It was found that afferent arterioles had significantly higher mean density of AAG overlap than efferent arterioles for the superficial, midcortical, and juxtamedullary (vascular bundles excluded) renal cortex. There was consistently more AAG perimeter facing the interstitium than overlapping the vasculature. These observations, together with the ultrastructural distribution of synaptic vesicles in varicosities, suggest that the interstitium might be an additional pathway of neurotransmitter access to the effector structures.

1998 ◽  
Vol 46 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Ying Hu ◽  
Ning Ma ◽  
Miao Yang ◽  
Reiji Semba

Recent studies suggest that carbon monoxide (CO), which is formed by the enzyme heme oxygenase (HO) during the conversion of heme to biliverdin, shares some of the chemical and biological properties of nitric oxide (NO) and may play roles similar to those of NO. Heme oxygenase activity in the kidney has been reported for many years, and there are some reports on the expression of mRNA for two HO isozymes (HO-1 and HO-2) and cellular localization of HO-1 protein. However, cellular localization of HO-2 protein in the kidney under normal conditions has not been reported. In the present study we examined the expression and distribution of HO-2 mRNA and HO-2 protein in rat kidney using RNA protection assay and light and electron immunocytochemistry. RNA protection assay confirmed constitutive expression of HO-2 transcript in rat kidney. HO-2 immunoreactivity was selectively found in epithelial cells of the thick ascending limb and distal convoluted tubule, connecting tubule cells, and principal cells of the collecting duct. These results suggest that HO-2 is synthesized in the kidney and that HO-2 in the epithelial cells of renal tubules may serve as a source for CO generation under normal conditions.


2014 ◽  
Vol 307 (3) ◽  
pp. F263-F272 ◽  
Author(s):  
Brendan C. Fry ◽  
Aurélie Edwards ◽  
Ioannis Sgouralis ◽  
Anita T. Layton

We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (Po2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. In the inner medulla, where the thin ascending limbs do not mediate significant active NaCl transport, interstitial fluid composition becomes much more homogeneous with respect to NaCl, urea, and osmolality. Nonetheless, a substantial Po2 gradient remains, owing to the relatively high oxygen demand of the inner medullary collecting ducts. Perhaps more importantly, the model predicts that in the absence of the three-dimensional medullary architecture, oxygen delivery to the inner medulla would drastically decrease, with the terminal inner medulla nearly completely deprived of oxygen. Thus model results suggest that the functional role of the three-dimensional medullary architecture may be to preserve oxygen delivery to the papilla. Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal Po2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption.


1991 ◽  
Vol 261 (6) ◽  
pp. F1080-F1087 ◽  
Author(s):  
Y. Terada ◽  
T. Moriyama ◽  
B. M. Martin ◽  
M. A. Knepper ◽  
A. Garcia-Perez

Microlocalization of mRNA coding for the guanylyl cyclase-coupled atrial natriuretic factor (ANF) receptor was carried out in the rat kidney. We used a combination of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, and vasa recta bundles. Relative quantitation of the resulting amplified cDNA utilized densitometry of autoradiograms from Southern blots probed with a specific 32P-labeled probe. Among renal tubule segments, the largest signal was found in the terminal inner medullary collecting duct (IMCD). Slightly smaller signals were found in the initial IMCD and in loop of Henle segments from the inner medulla. Readily detectable signals were also seen in the following segments (in descending order): cortical collecting duct, proximal convoluted tubule, medullary thick ascending limb, cortical thick ascending limb, distal convoluted tubule, and outer medullary collecting duct. Large signals were also detected in glomeruli and in vasa recta bundles from the inner stripe of the outer medulla. Based on these results, we conclude that 1) renal microlocalization of specific mRNAs coding for hormone receptors is feasible through application of the RT-PCR procedure in microdissected renal tubules and vascular elements, and 2) the gene for the guanylyl cyclase-coupled ANF receptor is broadly expressed along the nephron, raising the possibility that multiple sites of ANF action are present.


2005 ◽  
Vol 288 (4) ◽  
pp. F785-F791 ◽  
Author(s):  
Susan K. Fellner ◽  
William J. Arendshorst

ANG II induces a rise in cytosolic Ca2+ ([Ca2+]i) in vascular smooth muscle (VSM) cells via inositol trisphosphate receptor (IP3R) activation and release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ signal is augmented by calcium-induced calcium release (CICR) and by cyclic adeninediphosphate ribose (cADPR), which sensitizes the ryanodine-sensitive receptor (RyR) to Ca2+ to further amplify CICR. cADPR is synthesized from β-nicotinamide adenine dinucleotide (NAD+) by a membrane-bound bifunctional enzyme, ADPR cyclase. To investigate the possibility that ANG II activates the ADPR cyclase of afferent arterioles, we used inhibitors of the IP3R, RyR, and ADPR cyclase. Afferent arterioles were isolated from rat kidney with the magnetized microsphere and sieving technique and loaded with fura-2 to measure [Ca2+]i. In Ca2+-containing buffer, ANG II increased [Ca2+]i by 125 ± 10 nM. In the presence of the IP3R antagonists TMB-8 and 2-APB, the peak responses to ANG II were reduced by 74 and 81%, respectively. The specific antagonist of cADPR 8-Br ADPR and a high concentration of ryanodine (100 μM) inhibited the ANG II-induced increases in [Ca2+]i by 75 and 69%, respectively. Nicotinamide and Zn2+ are known inhibitors of the VSM ADPR cyclase. Nicotinamide diminished the [Ca2+]i response to ANG II by 66%. In calcium-free buffer, Zn2+ reduced the ANG II response by 68%. Simultaneous blockade of the IP3 and cADPR pathways diminished the [Ca2+]i response to ANG II by 83%. We conclude that ANG II initiates Ca2+ mobilization from the SR in afferent arterioles via the classic IP3R pathway and that ANG II may lead to activation of the ADPR cyclase to form cADPR, which, via its action on the RyR, substantially augments the Ca2+ response.


2000 ◽  
Vol 278 (4) ◽  
pp. H1248-H1255 ◽  
Author(s):  
Thomas L. Pallone ◽  
Erik P. Silldorff ◽  
Zhong Zhang

The intracellular calcium ([Ca2+]i) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10− 8 M) caused [Ca2+]i to fall in proportion to the resting [Ca2+]i ( r =0.82) of the endothelium. ANG II (10− 8 M) also inhibited both phases of the [Ca2+]i response generated by bradykinin (BK, 10− 7 M), 835 ± 201 versus 159 ± 30 nM (peak phase) and 169 ± 26 versus 103 ± 14 nM (plateau phase) (means ± SE). Luminal ANG II reduced BK (10− 7 M)-stimulated plateau [Ca2+]i from 180 ± 40 to 134 ± 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca2+]i to 113 ± 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10− 8 M) caused [Ca2+]i to fall from 352 ± 149 to 105 ± 37 nM. This effect occurred at a threshold ANG II concentration of 10− 10 M and was maximal at 10− 8 M. ANG II inhibited both the rate of Ca2+ entry into [Ca2+]i-depleted endothelia and the rate of Mn2+ entry into [Ca2+]i-replete endothelia. In contrast, ANG II raised [Ca2+]i in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca2+]i from baselines of 99 ± 33 and 53 ± 11 to peaks of 200 ± 47 and 65 ± 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca2+-dependent vasodilators to modulate vasomotor tone in vascular bundles.


1995 ◽  
Vol 269 (4) ◽  
pp. F461-F468 ◽  
Author(s):  
F. C. Brosius ◽  
K. Nguyen ◽  
A. K. Stuart-Tilley ◽  
C. Haller ◽  
J. P. Briggs ◽  
...  

Chloride/base exchange activity has been detected in every mammalian nephron segment in which it has been sought. However, in contrast to the Cl-/HCO3- exchanger AE1 in type A intercalated cells, localization of AE2 within the kidney has not been reported. We therefore studied AE2 expression in rat kidney. AE2 mRNA was present in cortex, outer medulla, and inner medulla. Semiquantitative polymerase chain reaction of cDNA from microdissected tubules revealed AE2 cDNA levels as follows [copies of cDNA derived per mm tubule (+/- SE)]: proximal convoluted tubule, 688 +/- 161; proximal straight tubule, 652 +/- 189; medullary thick ascending limb, 1,378 +/- 226; cortical thick ascending limb, 741 +/- 24; cortical collecting duct, 909 +/- 71; and outer medullary collecting duct, 579 +/- 132. AE2 cDNA was also amplified in thin limbs and in inner medullary collecting duct. AE2 polypeptide was detected in all kidney regions. AE2 mRNA and protein were also detected in several renal cell lines. The data are compatible with the postulated roles of AE2 in maintenance of intracellular pH and chloride concentration and with its possible participation in transepithelial transport.


1989 ◽  
Vol 256 (2) ◽  
pp. F366-F369 ◽  
Author(s):  
D. Brown ◽  
E. J. Sorscher ◽  
D. A. Ausiello ◽  
D. J. Benos

Amiloride-sensitive Na+ channels were localized in semithin frozen sections of rat renal medullary collecting ducts, using polyclonal antibodies directed against purified bovine kidney Na+ channel protein. The apical plasma membrane of collecting duct principal cells was heavily stained by indirect immunofluorescence, whereas intercalated cells were negative. Basolateral plasma membranes of both cell types were unstained, as were subapical vesicles in the cytoplasm of these cells. In the thick ascending limb of Henle, some scattered granular fluorescence was seen in the cytoplasm and close to the apical pole of epithelial cells, suggesting the presence of antigenic sites associated with some membrane domains in these cells. No staining was detected in thin limbs of Henle, or in proximal tubules in the outer medulla. These results show that amiloride-sensitive sodium channels are located predominantly on the apical plasma membrane of medullary collecting duct principal cells, the cells that are involved in Na+ homeostasis in this region of the kidney.


2015 ◽  
Vol 308 (9) ◽  
pp. F967-F980 ◽  
Author(s):  
Brendan C. Fry ◽  
Aurélie Edwards ◽  
Anita T. Layton

The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury.


2010 ◽  
Vol 299 (6) ◽  
pp. F1473-F1485 ◽  
Author(s):  
Daniel Ackermann ◽  
Nikolay Gresko ◽  
Monique Carrel ◽  
Dominique Loffing-Cueni ◽  
Daniel Habermehl ◽  
...  

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.


1982 ◽  
Vol 30 (4) ◽  
pp. 385-390 ◽  
Author(s):  
T B Orstavvik ◽  
T Inagami

The anatomical relationship between kallikrein and renin in the rat kidney was investigated immunohistochemically by the peroxidase-antiperoxidase method. Kallikrein was localized to the convoluted distal tubule, starting at a point, distal to the juxtaglomerular apparatus, where the thick ascending limb of loop of Henle transformed into the convoluted distal tubule. The thick ascending limb was identified by its content of uromucoid (Tamm-Horsfall glycoprotein). Kallikrein was never observed within the juxtaglomerular apparatus itself. The kallikrein-containing tubule ended where the distal tubule submerged into the collecting duct. Renin was found in epitheloid cells of the afferent arteriole. When neighboring sections were stained for kallikrein and renin, respectively, no close anatomical relationship was observed between the kallikrein-containing and the renin-containing structures.


Sign in / Sign up

Export Citation Format

Share Document