Apical maxi K channels in intercalated cells of CCT

1991 ◽  
Vol 261 (4) ◽  
pp. F696-F705 ◽  
Author(s):  
J. Pacha ◽  
G. Frindt ◽  
H. Sackin ◽  
L. G. Palmer

High-conductance (maxi) K channels in the apical membrane of rat and rabbit cortical collecting tubules (CCT) were studied using the patch-clamp technique. Principal cells (PC) and intercalated cells (IC) were distinguished with Hoffman modulation optics in split-open tubules. IC were further identified by staining tubules with the fluorescent mitochondrial dye, rhodamine 123. Maxi-K channels were distinguished by their high conductance (greater than 80 pS) and voltage-dependent kinetics. In CCT of rats on a low-Na diet, maxi K channels were observed in 11% of the cell-attached patches on PC and 79% of patches on IC. In rats on a normal diet, the channels were seen in 23 and 79% of patches on PC and IC, respectively. In the rabbit CCT, maxi K channels were observed in 12% (4 of 32) of the patches on PC and 82% (122 of 148) of the patches on IC. The greater abundance of channels in IC was confirmed in rat CCT using the whole-cell clamp technique. Current through the maxi K channels (IK) was measured as the tetraethylammonium (TEA)-sensitive (2.5 mM) outward current in cells equilibrated with 115 mM K and 10(-5) M Ca2+ in the pipette solution. When the cell was clamped to an internal potential of +40 mV, the average IK per cell was -4 +/- 5 pA in PC and 290 +/- 90 pA in IC. Lowering cytoplasmic Ca2+ from 10(-5) M to 10(-7) M reduced IK to 32 +/- 21 pA. Neither single Na channels nor amiloride-sensitive whole-cell currents were seen in IC. Finally, maxi K channels could be activated by pipette suction (10-40 cm H2O) in either cell-attached or inside-out patches on IC from rabbit CCT. This mechanosensitivity was observed even after chelation of free Ca2+ with ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) in the pipette or the bath solutions, implying that stretch activation of these channels was not mediated by increased Ca2+ entry into the cell. The IC maxi K channel may play a role in cell volume regulation or in K secretion during elevation of luminal hydrostatic pressure.

1996 ◽  
Vol 270 (6) ◽  
pp. G932-G938 ◽  
Author(s):  
J. Jury ◽  
K. R. Boev ◽  
E. E. Daniel

Single smooth muscle cells from the opossum body circular muscle were isolated and whole cell currents were characterized by the whole cell patch-clamp technique. When the cells were held at -50 mV and depolarized to 70 mV in 20-mV increments, initial small inactivating inward currents were evoked (-30 to 30 mV) followed by larger sustained outward currents. Depolarization from a holding potential of -90 mV evoked an initial fast inactivating outward current sensitive to 4-aminopyridine but not to high levels of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The outward currents reversed near K+ equilibrium potential and were abolished when KCl was replaced by CsCl in the pipette solution. The sustained outward current was inhibited by quinine and cesium. High EGTA in the pipette solution reduced but did not abolish the sustained outward currents, suggesting that both Ca(2+)-dependent and -independent currents were evoked. The nitric oxide (NO)-releasing agents Sin-1 and sodium nitroprusside increased outward K+ currents. High levels of EGTA in the pipette solution abolished the increase in outward current induced by Sin-1. The presence of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, blocked the effects of NO-releasing agents. We conclude that NO release activates K+ outward currents in opossum esophagus circular muscle, which may depend on Ca2+ release from the SR stores.


Large outward currents are recorded with the whole-cell patch-clamp technique on depolarization of rabbit cultured fibroblasts. Our findings suggest that these outward currents consist of two voltage-dependent components, one of which also depends on cytoplasmic calcium concentration. Total replacement of external Cl - by the large anion ascorbate does not affect the amplitude of the currents, indicating that both components must be carried by K + . Consistent with these findings with whole-cell currents, in single channel recordings from fibroblasts we found that most patches contain high-conductance potassium-selective channels whose activation depends on both membrane potential and the calcium concentration at the cytoplasmic surface of the membrane. In a smaller number of patches, a second population of high-conductance calcium-independent potassium channels is observed having different voltage-dependence. The calcium- and voltage-dependence suggest that these two channels correspond with the two components of outward current seen in the whole-cell recordings. The single channel conductance of both channels in symmetrical KCl (150 mM) is 260-270 pS. Both channels are highly selective for K + over both Na + and Cl - . The conductance of the channels when outward current is carried by Rb + is considerably smaller than when it is carried by K + . Some evidence is adduced to support the hypothesis that these potassium channel populations may be involved in the control of cell proliferation.


1989 ◽  
Vol 257 (3) ◽  
pp. C596-C600 ◽  
Author(s):  
W. C. Cole ◽  
K. M. Sanders

The role of G proteins in cholinergic suppression of Ca2+-activated K current was studied in isolated canine colonic myocytes with the whole cell voltage-clamp technique. Acetylcholine (ACh; 10.0 microM) caused a 64 +/- 2.4% depression in the Ca2+-dependent component of the outward current evoked at potentials between -45 and -15 mV when GTP (0.1 microM) was included in the pipette-filling solution. This effect was reversed within 2-4 min on washout of ACh. Without GTP in the filling solution, ACh caused a 15 +/- 2.5% depression in outward current in 60% of the cells tested. When the non-hydrolyzable GTP analogues, GTP gamma S (0.1 mM) or 5'-guanylylimidodiphosphate (GppNHp; 0.1 mM) were used, the decrease in outward current was greater (85 +/- 4.2 and 78 +/- 6.5%, respectively), and it was not reversed on withdrawal of ACh. Dialysis of the cell interior with pipette solution containing pertussis toxin (1 ng/ml) for 30 min had no effect on the whole cell currents evoked on depolarization, but it abolished the effect of ACh on Ca2+-dependent outward current. These data suggest that coupling of muscarinic receptors to the inhibition of Ca2+-activated K channels is mediated by pertussis toxin-sensitive G proteins in colonic smooth muscle cells. G protein-mediated inhibition is distinctly different from the opening of muscarinic-regulated K channels in other cell types.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


1995 ◽  
Vol 269 (1) ◽  
pp. C156-C162 ◽  
Author(s):  
T. Nakahari ◽  
Y. Marunaka

The whole cell patch-clamp technique was used to study ionic conductances in fetal distal lung epithelial (FDLE) cells. In unstimulated FDLE cells, K+ conductances were detected in lowered intracellular Cl- concentration ([Cl-]i, < or = 50 mM). The whole cell currents of FDLE cells were increased by elevation of intracellular Ca2+ concentration ([Ca2+]i) or intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration ([cAMP]i). The elevation of [Ca2+]i activated the K+ currents. The amiloride-blockable whole cell currents were activated by [cAMP]i of 1 mM with [Cl-]i of 20 mM and were more frequently detected in the pipette solution without ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) than with it (0.5 mM). When the [Cl-]i was fixed at 50 or 145 mM, however, the increase in these currents was not detected even with cAMP and without EGTA. The amiloride-blockable currents were detected in both the Na+ and K+ pipette solutions. Thus the increase in amiloride-blockable whole cell currents was due to the activation of nonselective cation channels. In FDLE cells treated with terbutaline, which is a beta 2-adrenergic receptor agonist, or forskolin, these currents were detected in the pipette solution containing 20 mM Cl- but were suppressed with time when the pipette solution contained 50 or 145 mM Cl-. It seems likely that maintenance of [Cl-]i at the lowered level is an important requirement for the FDLE cells to activate the amiloride-blockable whole cell currents. It is proposed that cellular mechanisms, such as cell shrinkage, exist to reduce the [Cl-]i in response to cAMP.


1999 ◽  
Vol 114 (6) ◽  
pp. 771-786 ◽  
Author(s):  
Lydia M. Henderson ◽  
Robert W. Meech

Expression of gp91-phox in Chinese hamster ovary (CHO91) cells is correlated with the presence of a voltage-gated H+ conductance. As one component of NADPH oxidase in neutrophils, gp91-phox is responsible for catalyzing the production of superoxide (O2·2). Suspensions of CHO91 cells exhibit arachidonate-activatable H+ fluxes (Henderson, L.M., G. Banting, and J.B. Chappell. 1995. J. Biol. Chem. 270:5909–5916) and we now characterize the electrical properties of the pathway. Voltage-gated currents were recorded from CHO91 cells using the whole-cell configuration of the patch-clamp technique under conditions designed to exclude a contribution from ions other than H+. As in other voltage-gated proton currents (Byerly, L., R. Meech, and W. Moody. 1984. J. Physiol. 351:199–216; DeCoursey, T.E., and V.V. Cherny. 1993. Biophys. J. 65:1590–1598), a lowered external pH (pHo) shifted activation to more positive voltages and caused the tail current reversal potential to shift in the manner predicted by the Nernst equation. The outward currents were also reversibly inhibited by 200 μM zinc. Voltage-gated currents were not present immediately upon perforating the cell membrane, but showed a progressive increase over the first 10–20 min of the recording period. This time course was consistent with a gradual shift in activation to more negative potentials as the pipette solution, pH 6.5, equilibrated with the cell contents (reported by Lucifer yellow included in the patch pipette). Use of the pH-sensitive dye 2′7′ bis-(2-carboxyethyl)-5(and 6) carboxyfluorescein (BCECF) suggested that the final intracellular pH (pHi) was ∼6.9, as though pHi was largely determined by endogenous cellular regulation. Arachidonate (20 μM) increased the amplitude of the currents by shifting activation to more negative voltages and by increasing the maximally available conductance. Changes in external Cl− concentration had no effect on either the time scale or the appearance of the currents. Examination of whole cell currents from cells expressing mutated versions of gp91-phox suggest that: (a) voltage as well as arachidonate sensitivity was retained by cells with only the NH2-terminal 230 amino acids, (b) histidine residues at positions 111, 115, and 119 on a putative membrane-spanning helical region of the protein contribute to H+ permeation, (c) histidine residues at positions 111 and 119 may contribute to voltage gating, (d) the histidine residue at position 115 is functionally important for H+ selectivity. Mechanisms of H+ permeation through gp91-phox include the possible protonation/deprotonation of His-115 as it is exposed alternatively to the interior and exterior faces of the cell membrane (see Starace, D.M., E. Stefani, and F. Bezanilla. 1997. Neuron. 19:1319–1327) and the transfer of protons across an “H-X-X-X-H-X-X-X-H” motif lining a conducting pore.


1995 ◽  
Vol 269 (3) ◽  
pp. C791-C796 ◽  
Author(s):  
J. K. Bubien

Cortical collecting duct fragments were manually dissected from 6-wk-old Sprague-Dawley rats. The fragments were enzymatically digested (collagenase A) into single cells, washed, and resuspended in serum-free RPMI 1640. Individual cells were examined electrophysiologically using the whole cell patch-clamp technique. Two morphologically distinct cell types were present in the cell suspension. Small round cells that had a capacitance of 7 pF and larger oval cells with a capacitance of 29 pF were consistently observed. Whole cell electrophysiological examination revealed that the small round cells had virtually no plasma membrane ionic conductance, whereas both inward and outward currents were observed in the larger oval-type cells. Also, superfusion of 250 pM arginine vasopressin specifically increased the inward conductance of only the larger cells. The effect could be completely inhibited by 2 microM amiloride or 100 mumol of the Rp diastereomer of 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (a specific adenosine 3',5'-cyclic monophosphate inhibitor). These findings are consistent with the hypothesis that the larger cells are principal cells and the smaller cells are intercalated cells and directly demonstrate that an amiloride-sensitive whole cell conductance is readily observable in freshly isolated cortical collecting duct cells. Thus the whole cell configuration of the patch-clamp technique appears to be well suited for assessing cellular mechanisms that regulate the ionic conductances of cortical collecting duct cells.


2011 ◽  
Vol 35 (5) ◽  
pp. 500-506 ◽  
Author(s):  
Naoki Oshima ◽  
Hiroo Kumagai ◽  
Kamon Iigaya ◽  
Hiroshi Onimaru ◽  
Akira Kawai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document