Basal nitric oxide production curtails arteriolar vasoconstrictor responses to ANG II in rat kidney

1996 ◽  
Vol 271 (2) ◽  
pp. F365-F373 ◽  
Author(s):  
H. Ikenaga ◽  
R. W. Fallet ◽  
P. K. Carmines

Experiments were performed to test the hypothesis that renal arteriolar vasoconstrictor responses to angiotensin II (ANG II) are curtailed through a mechanism that involves stimulation of endogenous nitric oxide (NO) synthesis. The in vitro blood-perfused juxtamedullary nephron technique was exploited to monitor arteriolar lumen diameter responses to exogenous ANG II before and during treatment with the NO synthase inhibitor N omega-nitro-L-arginine (L-NNA). Under control conditions, 1 nM ANG II reduced afferent and efferent arteriolar diameters by 13 and 11%, respectively. In the presence of L-NNA, 1 nM ANG II decreased afferent diameter by 26% and efferent diameter by 35%. This augmentation could not be attributed to the L-NNA-induced decrease in baseline diameter. L-NNA also augmented vasopressin responses, indicating a lack of agonist specificity in this interaction. ANG II reactivity during L-NNA treatment was not enhanced when tissue NO activity was fixed at basal levels (exposure to 1 microM sodium nitroprusside). These results indicate that endogenous NO modulates the vasoconstrictive impact of ANG II on both afferent and efferent arterioles of juxtamedullary nephrons and that this process does not require stimulation of NO synthesis.

1999 ◽  
Vol 276 (1) ◽  
pp. F79-F87 ◽  
Author(s):  
Hideki Ikenaga ◽  
Naohito Ishii ◽  
Sean P. Didion ◽  
Kun Zhang ◽  
Kurtis G. Cornish ◽  
...  

We performed experiments to test the hypothesis that experimental heart failure (HF) is associated with altered nitric oxide (NO)-dependent influences on the renal microvasculature, including diminished modulation of constrictor responses to ANG II. Eight to ten weeks after inducing HF in rats by coronary artery ligation, we administered enalaprilat to suppress ANG II synthesis and studied renal arteriolar function using the in vitro blood-perfused juxtamedullary nephron technique. In kidneys from sham-operated rats, NO synthase inhibition [100 μM N ω-nitro-l-arginine (l-NNA)] reduced afferent arteriolar diameter by 4.1 ± 0.6 μm and enhanced ANG II responsiveness (10 nM ANG II decreased afferent diameter by 10.1 ± 1.4 μm before and 12.8 ± 1.6 μm duringl-NNA treatment; P < 0.05). In kidneys from HF rats,l-NNA did not alter afferent arteriolar baseline diameter or ANG II responsiveness (10 nM ANG II decreased diameter by 12.5 ± 1.5 μm before and 12.5 ± 2.3 μm during l-NNA). The effects of l-NNA on efferent arteriolar function were also abated in HF rats. In renal cortex of HF rats, NO synthase activity was decreased by 63% and superoxide dismutase activity was diminished by 39% relative to tissue from sham-operated rats. Urinary nitrate/nitrite excretion was also reduced in HF rats. Thus both diminished synthesis and augmented degradation are likely to contribute to a decreased renal microvascular impact of endogenous NO during chronic HF, the consequences of which include loss of NO-dependent modulation of ANG II-induced vasoconstriction.


1993 ◽  
Vol 70 (3) ◽  
pp. 1255-1259 ◽  
Author(s):  
A. V. Nowicky ◽  
L. J. Bindman

1. Nitric oxide has been implicated in the production of long-term depression (LTD) in the cerebellum and in the production of long-term potentiation (LTP) and LTD in the hippocampus. We now provide evidence of its involvement in the induction of long-term synaptic potentiation in in vitro slices in the cerebral cortex of the rat. 2. Intracellular recordings were made from layer V neurons in the medial frontal cortex, and excitatory synaptic potentials (EPSPs) were evoked by electrical stimulation of layers II/III. Tetanic stimulation of this pathway may induce LTD or LTP or no change at these synapses. First we established experimental conditions under which a long lasting potentiation could be induced with a high incidence (> 60%), namely perfusion of slices with 1 microM bicuculline methiodide, second the use of increased shock duration in the tetanic conditioning stimuli, third and most important the addition of QX-314 to the microelectrode to reduce potassium conductances. Because the potentiation of the mean EPSP slope was significantly greater than the control at 40-min postconditioning, but was declining throughout this period, we refer to it for brevity as LTP, but strictly class it as an LTP-like phenomenon. 3. The nitric oxide (NO) synthase inhibitor interfered with the production of LTP. In the control group of neurons (n = 13) the mean depolarizing slope of the EPSP at 30-min post-conditioning was 142.7 +/- 2% (mean +/- SE) of the prestimulation control.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (5) ◽  
pp. F651-F659 ◽  
Author(s):  
R. J. Barrett ◽  
D. A. Droppleman

Renal vasoconstrictor responses to the adenosine A1 agonist N6-cyclopentyladenosine (CPA) were compared in the in situ autoperfused rat kidney to responses evoked by angiotensin II (ANG II), endothelin-1 (ET-1), arginine vasopressin (AVP), carbocyclic thromboxane A2 (CTxA2), phenylephrine (PE), and 5-hydroxytryptamine (5-HT). On the basis of their ED50 values (dose of agonist, in mass units, that produced 50% of maximal response to that agonist), the order of vasoconstrictor potency was ANG II > or = AVP > ET-1 > CPA > 5-HT > or = PE > CTxA2. Dose-response curves to CPA were shallower and maximal responses were weaker than those produced by the other agonists. Maximal responses, the log ED50, and the slope of the dose-response curve to CPA were markedly potentiated in the presence of the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME). Selective antagonism of A1 receptors increased renal blood flow and markedly attenuated CPA-induced renal vasoconstriction in the absence or presence of L-NAME but had no effect on the maximal responses to ANG II. Conversely, AT1 receptor antagonism attenuated renal vasoconstriction produced by ANG II but had little effect on the produced by CPA. These results suggest that endogenous NO modulates renal vasoconstriction produced by A1 receptor stimulation and provide evidence against an interaction between renovascular adenosine A1 and angiotensin AT1 receptors.


2003 ◽  
Vol 285 (3) ◽  
pp. F540-F549 ◽  
Author(s):  
Xuemei Wang ◽  
Greg Trottier ◽  
Rodger Loutzenhiser

The determinants of bradykinin (BK)-induced afferent arteriolar vasodilation were investigated in the in vitro perfused hydronephrotic rat kidney. BK elicited a concentration-dependent vasodilation of afferent arterioles that had been preconstricted with ANG II (0.1 nmol/l), but this dilation was transient in character. Pretreatment with the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester (100 μmol/l) and the cyclooxygenase inhibitor ibuprofen (10 μmol/l) did not prevent this dilation when tone was established by ANG II but fully blocked the response when tone was established by elevated extracellular KCl, which suggests roles for both NO and endothelium-derived hyperpolarizing factor (EDHF). We had previously shown that the EDHF-like response of the afferent arteriole evoked by ACh was fully abolished by a combination of charybdotoxin (ChTX;10 nmol/l) and apamin (AP; 1 μmol/l). However, in the current study, treatment with ChTX plus AP only reduced the EDHF-like component of the BK response from 98 ± 5 to 53 ± 6% dilation. Tetraethylammonium (TEA; 1 mmol/l), which had no effect on the EDHF-induced vasodilation associated with ACh, reduced the EDHF-like response to BK to 88 ± 3% dilation. However, the combination of TEA plus ChTX plus AP abolished the response (0.3 ± 1% dilation). Similarly, 17-octadecynoic acid (17-ODYA) did not prevent the dilation when it was administered alone (77 ± 9% dilation) but fully abolished the EDHF-like response when added in combination with ChTX plus AP (-0.5 ± 4% dilation). These findings suggest that BK acts via multiple EDHFs: one that is similar to that evoked by ACh in that it is blocked by ChTX plus AP, and a second that is blocked by either TEA or 17-ODYA. Our finding that a component of the BK response is sensitive to TEA and 17-ODYA is consistent with previous suggestions that the EDHF released by BK is an epoxyeicosatrienoic acid.


1996 ◽  
Vol 270 (3) ◽  
pp. R630-R635 ◽  
Author(s):  
N. Parekh ◽  
L. Dobrowolski ◽  
A. P. Zou ◽  
M. Steinhausen

This study compared the vasoconstrictor action of angiotensin II (ANG II) and norepinephrine (NE) with different levels of nitric oxide (NO) in the kidney of anesthetized rats. In one series of experiments, the drugs were infused intravenously, and systemic NO content was reduced by a NO synthase inhibitor, nitro-L-arginine methyl ester (L-NAME). L-NAME significantly enhanced the renal blood flow (RBF) reduction produced by ANG II from 26 to 49%, but it had no significant effect on the change in RBF induced by NE. Medullary blood flow was not influenced by either ANG II or NE given alone or given after L-NAME. In the second series of experiments, all drugs were infused into the renal artery to avoid their systemic and, hence, extrarenal effects. In these experiments, renal content of NO was increased by the NO donor sodium nitroprusside (SNP), decreased by L-NAME, or restored by replacing endogenous NO by exogenous NO (L-NAME + SNP). Effects of both ANG II and NE on RBF were similarly and significantly attenuated by SNP (60% of control), enhanced by L-NAME (200% of control), and restored by L-NAME + SNP (90% of control, not significant). Our results indicate that NO attenuates the renal vasoconstriction due to ANG II or NE and that the antagonism between vasoconstrictors and NO is not due to a constrictor-induced production of NO because exogenous and endogenous NO were equally effective.


2000 ◽  
Vol 278 (2) ◽  
pp. F302-F309 ◽  
Author(s):  
Gwynn C. Schoonmaker ◽  
Rachel W. Fallet ◽  
Pamela K. Carmines

Experiments were performed to test the hypothesis that the impact of endogenous nitric oxide (NO) on ANG II-induced renal arteriolar constriction is reduced in rats with insulin-dependent diabetes mellitus (65 mg/kg streptozotocin; STZ). Arteriolar diameter responses to exogenous ANG II were quantified before and during NO synthase inhibition (100 μM N ω-nitro-l-arginine;l-NNA) by using the in vitro blood-perfused juxtamedullary nephron technique. Afferent arteriolar lumen diameter averaged 20.7 ± 2.0 μm in Sham kidneys and 25.9 ± 1.3 μm in STZ kidneys ( P < 0.05). Efferent arteriolar diameter did not differ between Sham and STZ rats. In kidneys from Sham rats, afferent and efferent arteriolar responses to ANG II (0.1–10.0 nM) were exaggerated significantly by l-NNA. l-NNA also augmented efferent arteriolar ANG II responses in kidneys from STZ rats (high-glucose bath) but did not alter ANG II responses in afferent arterioles from STZ rats. l-NNA also accentuated efferent, but not afferent, arteriolar ANG II responses in STZ kidneys during acute restoration of bath glucose to normal levels. Superoxide dismutase (150 U/ml) restored the ability of l-NNA to allow exaggerated afferent arteriolar responses to ANG II in kidneys from STZ rats. These observations indicate that superoxide anion suppresses the modulatory influence of endogenous NO on ANG II-induced afferent arteriolar constriction in diabetes mellitus.


1992 ◽  
Vol 262 (4) ◽  
pp. G774-G778 ◽  
Author(s):  
J. R. Grider ◽  
K. S. Murthy ◽  
J. G. Jin ◽  
G. M. Makhlouf

The source of nitric oxide (NO) and its role in neurally induced relaxation was examined in smooth muscle of the stomach and tenia coli. Field stimulation of gastric muscle strips was accompanied by frequency-dependent relaxation, vasoactive intestinal peptide (VIP) release, and NO production: the NO synthase inhibitor, NG-nitro-L-arginine (L-NNA) completely inhibited NO production and partly inhibited VIP release (52-54%) and relaxation (58-88%); inhibition of all three functions was reversed by L-arginine but not by D-arginine. In isolated gastric muscle cells, VIP caused relaxation and stimulated NO production: L-NNA completely inhibited NO production and partly inhibited relaxation; the inhibition was reversed by L-arginine but not by D-arginine. Abolition of NO production with only partial inhibition of relaxation implied that NO production from muscle cells induced by the action of VIP was partly responsible for relaxation. By contrast, field stimulation of tenia coli was accompanied by relaxation and VIP release but not by NO production. Neither VIP release nor relaxation was affected by L-NNA. In isolated muscle cells of tenia coli, VIP caused relaxation but did not stimulate NO production; relaxation in these cells was not affected by L-NNA. We conclude that 1) VIP is the primary relaxant transmitter in both gastric muscle and tenia coli, 2) the release of VIP in gastric muscle but not in tenia coli stimulates NO production from target muscle cells, and 3) NO amplifies the relaxant effect of VIP in muscle cells and acts presynaptically to enhance the release of VIP.


1997 ◽  
Vol 273 (2) ◽  
pp. G530-G536 ◽  
Author(s):  
A. Veihelmann ◽  
T. Brill ◽  
M. Blobner ◽  
I. Scheller ◽  
B. Mayer ◽  
...  

Inflammatory stimulation of the liver induces nitric oxide (NO) biosynthesis and suppression of detoxication. In this study the effect of NO biosynthesis on cytochrome P-450 (CYP) enzyme activity was investigated by comparing in vivo and in vitro assays. To establish liver inflammation, CD rats were injected with Corynebacterium parvum (C. parvum) suspension. After 5 days NO biosynthesis was highly induced as indicated by increased NO2- plus NO3- serum concentrations. At the same time the aminopyrine breath test (ABT), measuring CYP activity in vivo, was reduced to 42% and the in vitro assay of aminopyrine turnover was suppressed to 12% of NaCl- injected controls. When C. parvum-injected animals were treated with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), CYP activities significantly improved with an ABT of 76% and an in vitro aminopyrine turnover of 47% of controls. Neither C. parvum injections nor L-NMMA treatment resulted in a significant change of CYP protein concentrations. These data indicate that suppression of xenobiotic metabolism can be attenuated by inhibition of NO biosynthesis during an ongoing process of inflammation.


1996 ◽  
Vol 80 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Y. Jia ◽  
L. Xu ◽  
D. J. Turner ◽  
J. G. Martin

The effects of N(omega-nitro-L-arginine (L-NNA), a nitric oxide synthase inhibitor, on airway responsiveness were studied in the spontaneously hyperresponsive Fischer and the control normoresponsive Lewis rat strains to investigate the role of the endogenous nitric oxide (NO) pathway in strain-related differences in airway responsiveness. Responsiveness to inhaled methacholine was significantly increased in L-NNA-treated Lewis rats but not in Fischer rats. L-NNA increased carbachol-induced tracheal contractions in vitro to a larger extent in Lewis rats compared with Fischer rats. The effect of L-NNA was abolished by removal of the epithelium. Carbachol induced a NO-dependent increase in guanosine 3′,5′-cyclic monophosphate levels in tracheal tissues but to a lesser extent in Fischer (2.1-fold increase) than in Lewis (3.7-fold increase) rats. In conclusion, endogenous NO is involved in the regulation of airway responsiveness to cholinergic agonists in rats. A relatively ineffective NO-guanosine 3′,5′-cyclic monophosphate regulatory mechanism in Fischer rats contributes, in part, to strain-related differences in airway responsiveness between Fischer and Lewis rats.


Sign in / Sign up

Export Citation Format

Share Document