Nonlinear filter properties of the thick ascending limb

1997 ◽  
Vol 273 (4) ◽  
pp. F625-F634 ◽  
Author(s):  
H. E. Layton ◽  
E. Bruce Pitman ◽  
Leon C. Moore

A mathematical model was used to investigate the filter properties of the thick ascending limb (TAL), that is, the response of TAL luminal NaCl concentration to oscillations in tubular fluid flow. For the special case of no transtubular NaCl backleak and for spatially homogeneous transport parameters, the model predicts that NaCl concentration in intratubular fluid at each location along the TAL depends only on the fluid transit time up the TAL to that location. This exact mathematical result has four important consequences: 1) when a sinusoidal component is added to steady-state TAL flow, the NaCl concentration at the macula densa (MD) undergoes oscillations that are bounded by a range interval envelope with magnitude that decreases as a function of oscillatory frequency; 2) the frequency response within the range envelope exhibits nodes at those frequencies where the oscillatory flow has a transit time to the MD that equals the steady-state fluid transit time (this nodal structure arises from the establishment of standing waves in luminal concentration, relative to the steady-state concentration profile, along the length of the TAL); 3) for any dynamically changing but positive TAL flow rate, the luminal TAL NaCl concentration profile along the TAL decreases monotonically as a function of TAL length; and 4) sinusoidal oscillations in TAL flow, except at nodal frequencies, result in nonsinusoidal oscillations in NaCl concentration at the MD. Numerical calculations that include NaCl backleak exhibit solutions with these same four properties. For parameters in the physiological range, the first few nodes in the frequency response curve are separated by antinodes of significant amplitude, and the nodes arise at frequencies well below the frequency of respiration in rat. Therefore, the nodal structure and nonsinusoidal oscillations should be detectable in experiments, and they may influence the dynamic behavior of the tubuloglomerular feedback system.

1991 ◽  
Vol 261 (5) ◽  
pp. F904-F919 ◽  
Author(s):  
H. E. Layton ◽  
E. B. Pitman ◽  
L. C. Moore

Recent micropuncture studies in rats have demonstrated the existence of oscillatory states in nephron filtration mediated by tubuloglomerular feedback (TGF). We develop a minimal mathematical model of the TGF system, consisting of a first-order hyperbolic partial differential equation describing thick ascending limb (TAL) NaCl reabsorption and an empirical feedback relation. An analytic bifurcation analysis of this model provides fundamental insight into how oscillatory states depend on the physiological parameters of the model. In the special case of no solute backleak in the TAL, the emergence of oscillations explicitly depends on two nondimensional parameters. The first corresponds to the delay time of the TGF response across the juxtaglomerular apparatus, and the second corresponds to the product of the slope of the TGF response curve at the steady-state operating point and the space derivative of the steady-state NaCl concentration profile in the TAL at the macula densa. Numerical calculations for the case without TAL backleak are consistent with this result. Numerical simulation of the more general case with TAL backleak shows that the bifurcation analysis still provides useful predictions concerning nephron dynamics. With typical parameter values, the analysis predicts that the TGF system will be in oscillatory state. However, the system is near enough to the boundary of the nonoscillatory region so that small changes in parameter values could result in nonoscillatory behavior.


2007 ◽  
Vol 292 (6) ◽  
pp. F1867-F1872 ◽  
Author(s):  
Ruisheng Liu ◽  
Jeffrey L. Garvin ◽  
YiLin Ren ◽  
Patrick J. Pagano ◽  
Oscar A. Carretero

Superoxide (O2−) enhances tubuloglomerular feedback by scavenging nitric oxide at the macula densa. However, the singling pathway of O2− production in the macula densa is not known. We hypothesized that the increase in tubular NaCl concentration that initiates tubuloglomerular feedback induces O2− production by the macula densa via NAD(P)H oxidase, which is activated by macula densa depolarization. We isolated and microperfused the thick ascending limb of the loop of Henle and attached macula densa in rabbits. A fluorescent dye, dihydroethidium, was used to detect O2− production at the macula densa. When luminal NaCl was switched from 10 to 80 mM, a situation of initiating maximum tubuloglomerular feedback response, O2− production significantly increased. To make sure that the shifts in the oxyethidium/dihydroethidium ratio were due to changes in O2−, we used tempol (10−4 M), a stable membrane-permeant superoxide dismutase mimetic. With tempol present, when we switched from 10 to 80 mM NaCl, the increase in oxyethidium/dihydroethidium ratio was blocked. To determine the source of O2−, we used the NAD(P)H oxidase inhibitor apocynin. When luminal NaCl was switched from 10 to 80 mM in the presence of apocynin, O2− production was inhibited by 80%. To see whether the effect of increasing luminal NaCl involves Na-K-2Cl cotransporters, we inhibited them with furosemide. When luminal NaCl was switched from 10 to 80 mM in the presence of furosemide, O2− production was blocked. To test whether depolarization of the macula densa induces O2− production, we artificially induced depolarization by adding valinomycin (10−6 M) and 25 mM KCl to the luminal perfusate. Depolarization alone significantly increases O2− production. We conclude that increasing luminal NaCl induces O2− production during tubuloglomerular feedback. O2− generated by the macula densa is primarily derived from NAD(P)H oxidase and is induced by depolarization.


1995 ◽  
Vol 268 (5) ◽  
pp. F960-F966 ◽  
Author(s):  
J. Schnermann

The furosemide sensitivity of the tubuloglomerular feedback (TGF) response has suggested an important role for the Na-2Cl-K cotransporter in the mechanism by which increased luminal NaCl concentration causes afferent arteriolar vasoconstriction. The present experiments in anesthetized rats were performed to evaluate the effect of K channel blockade with Ba on TGF, since Ba has been shown to inhibit NaCl transport in the thick ascending limb. The presence of either 1.5 or 2 mM BaCl2 during retrograde perfusion with a 135 mM NaCl solution reduced the decrease of early proximal flow rate (VEP) by 2.7 +/- 0.76 (P < 0.02) and 4.2 +/- 0.8 nl/min (P < 0.01) compared with perfusion without BaCl2. Retrograde perfusion with 38 mM NaCl + 5 mM KCl reduced VEP by 10.4 +/- 1.3 nl/min, whereas 40 mM NaCl + 1.5 mM BaCl2 caused a reduction by only 6.1 +/- 1.4 nl/min (P < 0.001). In contrast to the inhibition caused by retrograde perfusion with low concentrations of BaCl2, increased vasoconstriction was seen during retrograde perfusion with 5 mM BaCl2 or during orthograde perfusion with 10 mM BaCl2. The addition of 10(-4) M furosemide to a solution containing 5 mM BaCl2 largely blocked the increased vasoconstrictor response. Peritubular perfusion with a solution containing 5 mM BaCl2 caused a fall in stop-flow pressure in an adjacent nephron by 10.7 +/- 1.5 mmHg (P < 0.001). These results indicate that under our experimental conditions Ba ions exert a dual effect on vascular responses to changes in luminal NaCl concentration.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (4) ◽  
pp. F635-F649 ◽  
Author(s):  
H. E. Layton ◽  
E. Bruce Pitman ◽  
Leon C. Moore

A simple mathematical model was used to investigate the spectral properties of the tubuloglomerular feedback (TGF) system. A perturbation, consisting of small-amplitude broad-band forcing, was applied to simulated thick ascending limb (TAL) flow, and the resulting spectral response of the TGF pathway was assessed by computing a power spectrum from resulting TGF-regulated TAL flow. Power spectra were computed for both open- and closed-feedback-loop cases. Open-feedback-loop power spectra are consistent with a mathematical analysis that predicts a nodal pattern in TAL frequency response, with nodes corresponding to frequencies where oscillatory flow has a TAL transit time that equals the steady-state fluid transit time. Closed-feedback-loop spectra are dominated by the open-loop spectral response, provided that γ, the magnitude of feedback gain, is less than the critical value γc required for emergence of a sustained TGF-mediated oscillation. For γ exceeding γc, closed-loop spectra have peaks corresponding to the fundamental frequency of the TGF-mediated oscillation and its harmonics. The harmonics, expressed in a nonsinusoidal waveform for tubular flow, are introduced by nonlinear elements of the TGF pathway, notably TAL transit time and the TGF response curve. The effect of transit time on the flow waveform leads to crests that are broader than troughs and to an asymmetry in the magnitudes of increasing and decreasing slopes. For feedback gain magnitude that is sufficiently large, the TGF response curve tends to give a square waveshape to the waveform. Published waveforms and power spectra of in vivo TGF oscillations have features consistent with the predictions of this analysis.


2012 ◽  
Vol 302 (9) ◽  
pp. F1188-F1202 ◽  
Author(s):  
Anita T. Layton ◽  
Leon C. Moore ◽  
Harold E. Layton

In several previous studies, we used a mathematical model of the thick ascending limb (TAL) to investigate nonlinearities in the tubuloglomerular feedback (TGF) loop. That model, which represents the TAL as a rigid tube, predicts that TGF signal transduction by the TAL is a generator of nonlinearities: if a sinusoidal oscillation is added to constant intratubular fluid flow, the time interval required for an element of tubular fluid to traverse the TAL, as a function of time, is oscillatory and periodic but not sinusoidal. As a consequence, NaCl concentration in tubular fluid alongside the macula densa will be nonsinusoidal and thus contain harmonics of the original sinusoidal frequency. We hypothesized that the complexity found in power spectra based on in vivo time series of key TGF variables arises in part from those harmonics and that nonlinearities in TGF-mediated oscillations may result in increased NaCl delivery to the distal nephron. To investigate the possibility that a more realistic model of the TAL would damp the harmonics, we have conducted new studies in a model TAL that has compliant walls and thus a tubular radius that depends on transmural pressure. These studies predict that compliant TAL walls do not damp, but instead intensify, the harmonics. In addition, our results predict that mean TAL flow strongly influences the shape of the NaCl concentration waveform at the macula densa. This is a consequence of the inverse relationship between flow speed and transit time, which produces asymmetry between up- and downslopes of the oscillation, and the nonlinearity of TAL NaCl absorption at low flow rates, which broadens the trough of the oscillation relative to the peak. The dependence of waveform shape on mean TAL flow may be the source of the variable degree of distortion, relative to a sine wave, seen in experimental recordings of TGF-mediated oscillations.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ying Ge ◽  
Fan Fan ◽  
Sydney R Murphy ◽  
Jan Michael Williams ◽  
Ruisheng Liu ◽  
...  

Previous studies have indicated that a deficiency in the formation of 20-HETE in the proximal tubule and thick ascending limb of Henle in Dahl S rats increases sodium reabsorption and contributes to the development of hypertension. The present study examined whether the lack of 20-HETE production in the renal vasculature contributes to the progression of renal injury by altering the myogenic or tubuloglomerular feedback (TGF) response of the afferent arteriole (Af-Art). The production of 20-HETE was significantly lower by 54% in renal microvessels isolated from the kidneys of Dahl S rats versus that seen than in SS.5BN consomic strain in which chromosome 5 from the Brown Norway (BN) rat containing the CYP4A genes responsible for the formation of 20-HETE was transferred into the Dahl S genetic background. The luminal diameter of the Af-Art decreased by 14.7± 1.5% (from 20.5 ± 0.7 to 17.5 ± 0.8 μm, n=6) in SS.5BN rats whereas the diameter of the Af-Art remained unaltered in Dahl S rats (from 20.1 ± 0.6 to 21.7 ± 0.6 μm, n=7) when the perfusion pressure was increased from 60 mmHg to 120 mmHg. In other experiments, adenosine (1 μM) reduced the diameter of the Af-Art in the SS.5BN rats by 15±0.7% (from 20.1 ±0.4 to 17.1 ± 0.9 μm, n=3) whereas the Af-Art of Dahl S rats was unaltered. However, administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM, n=6), or a selective 20-HETE antagonist, 6, 15-20-HEDE (10 μM, n=6) completely blocked the myogenic and adenosine responses in the Af-Art of SS.5BN rats but it had no effect in Dahl S rats. Administration of a 20-HETE agonist, 5, 14-20-HEDE (1 μM) restored the myogenic response (from 20.7 ± 0.7 to 17.6 ± 0.6 μm, n=7) and vasoconstrictor response to adenosine in the Af-Art of Dahl S rats. These studies confirm the key role of 20-HETE in modulating the responsiveness of the Af-Art and indicate that a deficiency in the formation of 20-HETE in renal microvessels contributes to the marked susceptibility of Dahl S rats to develop hypertension induced renal injury.


2018 ◽  
Vol 15 (21) ◽  
pp. 6559-6572 ◽  
Author(s):  
Xingjie Lu ◽  
Ying-Ping Wang ◽  
Yiqi Luo ◽  
Lifen Jiang

Abstract. Ecosystem carbon (C) transit time is a critical diagnostic parameter to characterize land C sequestration. This parameter has different variants in the literature, including a commonly used turnover time. However, we know little about how different transit time and turnover time are in representing carbon cycling through multiple compartments under a non-steady state. In this study, we estimate both C turnover time as defined by the conventional stock over flux and mean C transit time as defined by the mean age of C mass leaving the system. We incorporate them into the Community Atmosphere Biosphere Land Exchange (CABLE) model to estimate C turnover time and transit time in response to climate warming and rising atmospheric [CO2]. Modelling analysis shows that both C turnover time and transit time increase with climate warming but decrease with rising atmospheric [CO2]. Warming increases C turnover time by 2.4 years and transit time by 11.8 years in 2100 relative to that at steady state in 1901. During the same period, rising atmospheric [CO2] decreases C turnover time by 3.8 years and transit time by 5.5 years. Our analysis shows that 65 % of the increase in global mean C transit time with climate warming results from the depletion of fast-turnover C pool. The remaining 35 % increase results from accompanied changes in compartment C age structures. Similarly, the decrease in mean C transit time with rising atmospheric [CO2] results approximately equally from replenishment of C into fast-turnover C pool and subsequent decrease in compartment C age structure. Greatly different from the transit time, the turnover time, which does not account for changes in either C age structure or composition of respired C, underestimated impacts of warming and rising atmospheric [CO2] on C diagnostic time and potentially led to deviations in estimating land C sequestration in multi-compartmental ecosystems.


1999 ◽  
Vol 277 (3) ◽  
pp. F447-F453 ◽  
Author(s):  
John N. Lorenz ◽  
Patrick J. Schultheis ◽  
Timothy Traynor ◽  
Gary E. Shull ◽  
Jürgen Schnermann

The Na/H exchanger isoform 3 (NHE3) is expressed in the proximal tubule and thick ascending limb and contributes to the reabsorption of fluid and electrolytes in these segments. The contribution of NHE3 to fluid reabsorption was assessed by micropuncture in homozygous ( Nhe3 −/−) and heterozygous ( Nhe3 +/−) knockout mice, and in their wild-type (WT, Nhe3 +/+) littermates. Arterial pressure was lower in the Nhe3 −/−mice (89 ± 6 mmHg) compared with Nhe3 +/+ (118 ± 4) and Nhe3 +/−(108 ± 5). Collections from proximal and distal tubules demonstrated that proximal fluid reabsorption was blunted in both Nhe3 +/− and Nhe3 −/−mice (WT, 4.2 ± 0.3; Nhe3 +/−, 3.4 ± 0.2; and Nhe3 −/−, 2.6 ± 0.3 nl/min; P < 0.05). However, distal delivery of fluid was not different among the three groups of mice (WT, 3.3 ± 0.4 nl/min; Nhe3 +/−, 3.3 ± 0.2 nl/min; and Nhe3 −/−, 3.0 ± 0.4 nl/min; P < 0.05). In Nhe3 −/−mice, this compensation was largely attributable to decreased single-nephron glomerular filtration rate (SNGFR): 10.7 ± 0.9 nl/min in the Nhe3 +/+ vs. 6.6 ± 0.8 nl/min in the Nhe3 −/−, measured distally. Proximal-distal SNGFR differences in Nhe3 −/−mice indicated that much of the decrease in SNGFR was due to activation of tubuloglomerular feedback (TGF), and measurements of stop-flow pressure confirmed that TGF is intact in Nhe3 −/−animals. In contrast to Nhe3 −/−mice, normalization of early distal flow rate in Nhe3 +/−mice was not related to decreased SNGFR (9.9 ± 0.7 nl/min), but rather, to increased fluid reabsorption in the loop segment ( Nhe3 +/+, 2.6 ± 0.2; Nhe3 +/−, 3.6 ± 0.5 nl/min). We conclude that NHE3 is a major Na/H exchanger isoform mediating Na+ and fluid reabsorption in the proximal tubule. In animals with NHE3 deficiency, normalization of fluid delivery to the distal tubule is achieved through alterations in filtration rate and/or downstream transport processes.


1997 ◽  
Vol 8 (12) ◽  
pp. 1831-1837 ◽  
Author(s):  
V Vallon ◽  
H Osswald ◽  
R C Blantz ◽  
S Thomson

Transport through the Na+-2Cl(-)-K+ cotransporter in the luminal membrane of macula densa cells is considered critical for tubuloglomerular feedback (TGF). Although various studies could support the importance of luminal Na+ and Cl-, the role of luminal K+ in TGF has not been thoroughly addressed. The study presented here examines this issue in nephrons with superficial glomeruli of anesthetized male Munich-Wistar-Frömter rats. Ambient Na+ concentration in early distal tubular fluid was approximately 22 mM, suggesting collection sites relatively close to the macula densa segment. First, it was found that ambient early distal tubular K+ concentration is approximately 1.3 mM, i.e., close to the K+ affinity of the Na+-2Cl(-)-K+ cotransporter in the thick ascending limb. Second, it was observed that a change in late proximal tubular flow rate, i.e., a maneuver that is known to induce a TGF response, significantly alters early distal tubular K+ concentration. Third, previous experiments failed to show an inhibition in TGF response during retrograde perfusion of the macula densa with K+-free solutions. Because of a potential K+ influx into the lumen between the perfusion site and the macula densa, however, the K+ channel blocker U37883A was added to the K+-free perfusate. TGF response was assessed as the fall in nephron filtration rate in response to retrograde perfusion of the macula densa segment from early distal tubular site. It was observed that luminal U37883A (100 microM) significantly attenuated TGF. Because adding 5 mM KCl to the perfusate restored TGF in the presence of U37883A and because the inhibitory action of U37883A on tubular K+ secretion was confirmed, the effect of U37883A on TGF was most likely caused by inhibition of K+ influx into the perfused segment, which decreased luminal K+ concentration at the macula densa. The present findings support a potential role for luminal K+ in TGF, which is in accordance with a transmission of the TGF signal across the macula densa via Na+-2Cl(-)-K+ cotransporter.


Sign in / Sign up

Export Citation Format

Share Document