In vitro metabolic and respiratory acidosis selectively inhibit osteoblastic matrix gene expression

1999 ◽  
Vol 277 (5) ◽  
pp. F750-F755 ◽  
Author(s):  
Kevin K. Frick ◽  
David A. Bushinsky

Clinically, a decrease in blood pH may be due to either a reduction in bicarbonate concentration ([H[Formula: see text]], metabolic acidosis) or an increase in[Formula: see text] (respiratory acidosis). In mammals, metabolic acidosis induces a far greater increase in urine calcium excretion than respiratory acidosis. In cultured bone, metabolic acidosis induces a marked increase in calcium efflux and a decrease in osteoblastic collagen synthesis, whereas isohydric respiratory acidosis has little effect on either parameter. We have shown that metabolic acidosis prevents the normal developmental increase in the expression of RNA for matrix Gla protein and osteopontin in chronic cultures of primary murine calvarial bone cells (predominantly osteoblasts) but does not alter expression of osteonectin. To compare the effects of isohydric metabolic and respiratory acidosis on expression of these genes, bone cell cultures were incubated in medium at pH ∼7.2 to model metabolic ([H[Formula: see text]], ∼13 mM) or respiratory ([Formula: see text], ∼80 mmHg) acidosis or at pH ∼7.4 as a control. Cells were sampled at weeks 4, 5, and 6 to assess specific RNA content. At all time periods studied, both metabolic and respiratory acidosis inhibited the expression of RNA for matrix Gla protein and osteopontin to a similar extent, whereas there was no change in osteonectin expression. In contrast to the significant difference in the effects of metabolic and respiratory acidosis on bone calcium efflux and osteoblastic collagen synthesis, these two forms of acidosis have a similar effect on osteoblastic RNA expression of both matrix Gla protein and osteopontin. Thus, although several aspects of bone cell function are dependent on the type of acidosis, expression of these two matrix genes appears to be regulated by extracellular pH, independently of the type of acidosis.

1995 ◽  
Vol 268 (1) ◽  
pp. C80-C88 ◽  
Author(s):  
D. A. Bushinsky

When bone is cultured in acidic medium produced by a reduced bicarbonate concentration ([HCO(3-)]), a model of metabolic acidosis, there is greater net calcium efflux than when the same decrement in pH is produced by an increased partial pressure of carbon dioxide (PCO2), a model of respiratory acidosis. To determine the effects of metabolic and respiratory acidosis on bone cell function we cultured neonatal mouse calvariae for 48 h under control conditions (pH approximately 7.40, PCO2 approximately 41 mmHg, [HCO(3-)] approximately 25 meq/l) or under isohydric acidic conditions simulating metabolic (pH approximately 7.09, [HCO(3-)] approximately 12) or respiratory (pH approximately 7.10, PCO2 approximately 86) acidosis and measured osteoblastic collagen synthesis and alkaline phosphatase activity and osteoclastic beta-glucuronidase activity. Collagen synthesis was inhibited by metabolic (23.2 +/- 1.3 vs. 30.3 +/- 1.0% in control) but was not altered by respiratory (32.3 +/- 0.6) acidosis. Alkaline phosphatase activity was inhibited by metabolic (402 +/- 16 vs. 471 +/- 15 nmol P.min-1.mg protein-1 in control) but not altered by respiratory (437 +/- 25) acidosis. beta-Glucuronidase activity was stimulated by metabolic (1.02 +/- 0.06 vs. 0.78 +/- 0.05 micrograms phenolphthalein released.bone-1.h-1 in control) but not altered by respiratory (0.73 +/- 0.06) acidosis. Net calcium efflux in control was increased by metabolic (783 +/- 57 vs. 20 +/- 57 nmol.bone-1.48 h-1 in control) and by respiratory (213 +/- 45) acidosis; however, calcium efflux with metabolic was greater than with respiratory acidosis.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (5) ◽  
pp. F836-F842 ◽  
Author(s):  
D. A. Bushinsky

In vivo chronic metabolic acidosis induces bone mineral dissolution. Whether the dissolution is due to alterations in physicochemical factors alone, as in acute metabolic acidosis, or requires participation of bone cells is not clear. The effect of chronic respiratory acidosis on bone has also not been established. To determine the effects of chronic metabolic and respiratory acidosis on net calcium flux from bone, we cultured live and dead neonatal mouse calvariae for 99 h in control medium or in medium acidified (pH approximately equal to 7.1) either by lowering the bicarbonate concentration (Met) or by increasing the PCO2 (Resp). We measured net calcium flux (JCa) over 0-48, 48-96, and 96-99 h. Over the first 48 h, there was greater net calcium efflux from live and dead Met than from both Resp groups. All four acidic groups had greater net calcium efflux than controls. Over the last 51 h of the chronic 99 h culture, there was net calcium efflux only from live Met (JCa = 285 +/- 129 nmol.bone-1.3 h-1) and not from any of the other groups (live control, JCa = -183 +/- 24; live Resp, JCa = -110 +/- 22; dead control, JCa = -256 +/- 12; dead Met, JCa = 11 +/- 78; dead Resp, JCa = -27 +/- 47; each P less than 0.02 vs. live Met). There is net calcium efflux from live cultured neonatal mouse calvariae during chronic metabolic, but not respiratory, acidosis. During chronic acidosis, decreased medium bicarbonate, and not just a fall in pH, is necessary to enhance net calcium efflux from live bone.


2001 ◽  
Vol 281 (6) ◽  
pp. F1058-F1066 ◽  
Author(s):  
David A. Bushinsky ◽  
Walter R. Parker ◽  
Kristen M. Alexander ◽  
Nancy S. Krieger

First published July 12, 2001; 10.1152/ajprenal.00355.2001.— A decrease in blood pH may be due to either a reduction in bicarbonate concentration ([HCO[Formula: see text]]; metabolic acidosis) or to an increase in Pco 2 (respiratory acidosis). In mammals, metabolic, but not respiratory, acidosis increases urine calcium excretion without altering intestinal calcium absorption, indicating that the additional urinary calcium is derived from bone. In cultured bone, chronic metabolic, but not respiratory, acidosis increases net calcium efflux ( J Ca), decreases osteoblastic collagen synthesis, and increases osteoclastic bone resorption. Metabolic acidosis increases bone PGE2production, which is correlated with J Ca, and inhibition of PGE2 production inhibits this acid-induced J Ca. Given the marked differences in the osseous response to metabolic and respiratory acidosis, we hypothesized that incubation of neonatal mouse calvariae in medium simulating respiratory acidosis would not increase medium PGE2 levels, as observed during metabolic acidosis. To test this hypothesis, we determined medium PGE2 levels and J Ca from calvariae incubated at pH ∼7.1 to model either metabolic (Met; [HCO[Formula: see text]] ∼11 mM) or respiratory (Resp; Pco 2 ∼83 Torr) acidosis, or at pH ∼7.5 as a control (Ntl). We found that after 24–48 and 48–51 h in culture, periods when cell-mediated J Capredominates, medium PGE2 levels and J Ca were increased with Met, but not Resp, compared with Ntl, and there was a direct correlation between medium PGE2 levels and J Ca. Thus metabolic, but not respiratory, acidosis induces the release of bone PGE2, which mediates J Ca from bone.


1996 ◽  
Vol 271 (1) ◽  
pp. F216-F222 ◽  
Author(s):  
D. A. Bushinsky

In vivo and in vitro evidence indicates that metabolic acidosis, which may occur prior to complete excretion of end products of metabolism, increases urinary calcium excretion. The additional urinary calcium is almost certainly derived from bone mineral. Neutralization of this daily acid load, through the provision of base, decreases calcium excretion, suggesting that alkali may influence bone calcium accretion. To determine whether metabolic alkalosis alters net calcium efflux (JCa+) from bone and bone cell function, we cultured neonatal mouse calvariae for 48 h in either control medium (pH approximately equal to 7.4, [HCO3-] approximately equal to 24), medium simulating mild alkalosis (pH approximately equal to 7.5, [HCO3-] approximately equal to 31), or severe alkalosis (pH approximately equal to 7.6, [HCO3-] approximately equal to 39) and measured JCa+ and the release of osteoclastic beta-glucuronidase and osteoblastic collagen synthesis. Compared with control, metabolic alkalosis caused a progressive decrease in JCa+, which was correlated inversely with initial medium pH (pHi). Alkalosis caused a decrease in osteoclastic beta-glucuronidase release, which was correlated inversely with pHi and directly with JCa+. Alkalosis also caused an increase in osteoblastic collagen synthesis, which was correlated directly with pHi and inversely with JCa+. There was a strong inverse correlation between the effects alkalosis on osteoclastic beta-glucuronidase release and osteoblastic collagen synthesis. Thus metabolic alkalosis decreases JCa+ from bone, at least in part, by decreasing osteoclastic resorption and increasing osteoblastic formation. These results suggest that the provision of base to neutralize endogenous acid production may improve bone mineral accretion.


1995 ◽  
Vol 269 (6) ◽  
pp. C1364-C1370 ◽  
Author(s):  
D. A. Bushinsky ◽  
E. L. Nilsson

Patients with end-stage renal disease are acidotic and often develop secondary hyperparathyroidism. Whether acidosis contributes to the bone disease observed in these patients is not clear. To determine whether acidosis and parathyroid hormone (PTH) have additive effects on net calcium efflux (JCa+) from bone and on bone cell function, we measured JCa+, osteoblastic collagen synthesis, and osteoclastic beta-glucuronidase release from neonatal mouse calvariae cultured in control (Ctl, pH approximately 7.4) or acidified (Met, pH approximately 7.1) medium with or without a submaximal concentration of PTH (10(-10) M) for 48 h. Compared with Ctl, from 24 to 48 h JCa+ was increased with Met and with PTH, and the combination of Met + PTH increased JCa+ further. Compared with Ctl, collagen synthesis was decreased with Met and with PTH and decreased further with Met + PTH. There was an inverse correlation between percent collagen synthesis and JCa+. Compared with Ctl, beta-glucuronidase release into the medium was increased with Met and with PTH and increased further with Met + PTH. There was a direct correlation between medium beta-glucuronidase activity and JCa+. Osteoclastic beta-glucuronidase activity correlated inversely with osteoblastic collagen synthesis. During cultures to 96 h, there continued to be greater JCa+ from calvariae incubated with Met + PTH than from those with either treatment alone. Thus acidosis and PTH independently stimulated JCa+ from bone, inhibited osteoblastic collagen synthesis, and stimulated osteoclastic beta-glucuronidase secretion, whereas the combination had a greater effect on each of these parameters than either treatment alone. These findings indicate that acidosis and PTH can have an additive effect on bone cell function and suggest that uremic osteodystrophy may result from a combination of a low pH and an elevated PTH.


1993 ◽  
Vol 13 (9) ◽  
pp. 5168-5174
Author(s):  
P H Krebsbach ◽  
J R Harrison ◽  
A C Lichtler ◽  
C O Woody ◽  
D W Rowe ◽  
...  

To directly compare the patterns of collagen promoter expression in cells and tissues, the activity of COL1A1 fusion genes in calvariae of neonatal transgenic mice and in primary bone cell cultures derived by sequential digestion of transgenic calvariae was measured. ColCAT3.6 contains 3.6 kb (positions -3521 to +115) of the rat COL1A1 gene ligated to the chloramphenicol acetyltransferase (CAT) reporter gene. ColCAT2.3 and ColCAT1.7 are 5' deletion mutants which contain 2,296 and 1,672 bp, respectively, of COL1A1 DNA upstream from the transcription start site. ColCAT3.6 activity was 4- to 6-fold lower in primary bone cell cultures than in intact calvariae, while ColCAT2.3 activity was at least 100-fold lower in primary bone cells than in calvariae. These changes were accompanied by a threefold decrease in collagen synthesis and COL1A1 mRNA levels in primary bone cells compared with collagen synthesis and COL1A1 mRNA levels in freshly isolated calvariae. ColCAT3.6 and ColCAT2.3 activity was maintained in calvariae cultured in the presence or absence of serum for 4 to 7 days. Thus, when bone cells are removed from their normal microenvironment, there is parallel downregulation of collagen synthesis, collagen mRNA levels, and ColCAT3.6 activity, with a much greater decrease in ColCAT2.3. These data suggest that a 624-bp region of the COL1A1 promoter between positions -2296 and -1672 is active in intact and cultured bone but inactive in cultured cells derived from the bone. We suggest that the downregulation of COL1A1 activity in primary bone cells may be due to the loss of cell shape or to alterations in cell-cell and/or cell-matrix interactions that normally occur in intact bone.


2011 ◽  
Vol 7 (5) ◽  
pp. 751-754 ◽  
Author(s):  
Shaena Montanari ◽  
Stephen L. Brusatte ◽  
Wendy De Wolf ◽  
Mark A. Norell

Recent studies have emphasized the ability to reconstruct genome sizes (C-values) of extinct organisms such as dinosaurs, using correlations between known genome sizes and bone cell (osteocyte lacunae) volumes. Because of the established positive relationship between cell size and genome size in extant vertebrates, osteocyte lacunae volume is a viable proxy for reconstructing C-values in the absence of any viable genetic material. However, intra-skeletal osteocyte lacunae size variation, which could cause error in genome size estimation, has remained unexplored. Here, 11 skeletal elements of one individual from each of four major clades (Mammalia, Amphibia, Aves, Reptilia) were examined histologically. Skeletal elements in all four clades exhibit significant differences in the average sizes of their lacunae. This variation, however, generally does not cause a significant difference in the estimated genome size when common phylogenetic estimation methods are employed. On the other hand, the spread of the estimations illustrates that this method may not be precise. High variance in genome size estimations remains an outstanding problem. Additionally, a suite of new methods is introduced to further automate the measurement of bone cells and other microstructural features on histological thin sections.


1993 ◽  
Vol 13 (9) ◽  
pp. 5168-5174 ◽  
Author(s):  
P H Krebsbach ◽  
J R Harrison ◽  
A C Lichtler ◽  
C O Woody ◽  
D W Rowe ◽  
...  

To directly compare the patterns of collagen promoter expression in cells and tissues, the activity of COL1A1 fusion genes in calvariae of neonatal transgenic mice and in primary bone cell cultures derived by sequential digestion of transgenic calvariae was measured. ColCAT3.6 contains 3.6 kb (positions -3521 to +115) of the rat COL1A1 gene ligated to the chloramphenicol acetyltransferase (CAT) reporter gene. ColCAT2.3 and ColCAT1.7 are 5' deletion mutants which contain 2,296 and 1,672 bp, respectively, of COL1A1 DNA upstream from the transcription start site. ColCAT3.6 activity was 4- to 6-fold lower in primary bone cell cultures than in intact calvariae, while ColCAT2.3 activity was at least 100-fold lower in primary bone cells than in calvariae. These changes were accompanied by a threefold decrease in collagen synthesis and COL1A1 mRNA levels in primary bone cells compared with collagen synthesis and COL1A1 mRNA levels in freshly isolated calvariae. ColCAT3.6 and ColCAT2.3 activity was maintained in calvariae cultured in the presence or absence of serum for 4 to 7 days. Thus, when bone cells are removed from their normal microenvironment, there is parallel downregulation of collagen synthesis, collagen mRNA levels, and ColCAT3.6 activity, with a much greater decrease in ColCAT2.3. These data suggest that a 624-bp region of the COL1A1 promoter between positions -2296 and -1672 is active in intact and cultured bone but inactive in cultured cells derived from the bone. We suggest that the downregulation of COL1A1 activity in primary bone cells may be due to the loss of cell shape or to alterations in cell-cell and/or cell-matrix interactions that normally occur in intact bone.


2010 ◽  
Vol 299 (2) ◽  
pp. F418-F425 ◽  
Author(s):  
Kevin K. Frick ◽  
David A. Bushinsky

In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO3−])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco2)] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Cai). To determine whether Resp increases Cai, as does Met, we imaged Cai in primary cultures of bone cells. pH for Met = 7.07 ([HCO3−] = 11.8 mM) and for Resp = 7.13 (Pco2 = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Cai in individual bone cells; however, Met stimulated Cai to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Cai in Met than Resp. Both Met and Resp induced a marked, transient increase in Cai in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Cai by Met in primary bone cells is not a function of OGR1 alone, but must involve H+ receptors other than OGR1, or pathways sensitive to Pco2, HCO3−, or total CO2 that modify the effect of H+ in primary bone cells.


1988 ◽  
Vol 254 (3) ◽  
pp. F306-F310 ◽  
Author(s):  
D. A. Bushinsky

During acute metabolic acidosis there is a net influx of protons into bone, decreasing the elevated proton concentration. Whether there is an influx of protons into bone during acute respiratory acidosis is not known. To determine the effect of respiratory acidosis on net proton flux (JH) relative to bone, we compared JH from neonatal mouse calvariae incubated for 3 h in medium acidified by an increase in PCO2 (respiratory acidosis) with that from calvariae incubated in medium acidified to the same extent by a decrease in bicarbonate concentration (metabolic acidosis). The initial medium pH with respiratory acidosis was not different from that with metabolic acidosis (7.108 +/- 0.005 vs. 7.091 +/- 0.007, respectively, P = NS). During respiratory acidosis there was no JH from bone relative to the medium (JH = 236 +/- 93 neq.bone-1.3h-1, P = NS vs. 0); however, during metabolic acidosis there was net proton influx from the medium into bone (JH = -703 +/- 108, P less than 0.05 vs. 0, P less than 0.001 vs. respiratory acidosis). There was less calcium efflux from bone during respiratory than during metabolic acidosis (JCa = 68 +/- 6 nmol.bone-1.3 h-1 vs. 100 +/- 9, respectively, P less than 0.001). There is a net influx of protons into bone in vitro during acute metabolic, but not during acute respiratory, acidosis. The smaller calcium efflux during respiratory acidosis may indicate less net bone mineral dissolution and thus less buffer release into the medium.


Sign in / Sign up

Export Citation Format

Share Document