Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets

2000 ◽  
Vol 279 (2) ◽  
pp. F252-F258 ◽  
Author(s):  
Johannes Loffing ◽  
Laurence Pietri ◽  
Fintan Aregger ◽  
May Bloch-Faure ◽  
Urs Ziegler ◽  
...  

Previous electrophysiological experiments on renal cortical collecting ducts indicated that dietary sodium intake and variations in aldosterone plasma levels regulate the abundance of functional epithelial Na channels (ENaC) in the apical plasma membrane. In mouse kidney we investigated by immunohistochemistry whether feeding for 3 wk a diet with high (3% Na) and low (0.05% Na) Na content influences the distribution pattern of ENaC. In mice of all experimental groups, ENaC was apparent in cells from the late portion of the distal convoluted tubule (DCT2) down to the medullary collecting duct (CD). In mice on a high-Na diet (plasma aldosterone: 40.8 ± 2.0 ng/dl), the α-subunit was undetectable, and the β- and γ-ENaC were detected in the cytoplasm, but not in the apical plasma membrane of the cells. In contrast, in mice on a low-Na diet (plasma aldosterone: 93.6 ± 9.3 ng/dl) all three ENaC subunits were displayed in the subapical cytoplasm and in the apical membrane of DCT2, connecting tubule (CNT), and, although less prominent, in cortical CD cells. Apical plasma membrane immunostaining progressively decreased along the cortical CD, simultaneously with increasing cytoplasmic staining for β- and γ-ENaC. Thus our data on mice adapted to moderately low and high Na intake suggest that regulation of ENaC function in vivo involves shifts of β- and γ-subunits from the cytoplasm to the apical plasma membrane and vice versa, respectively. The insertion of these subunits into the apical plasma membrane coincides with upregulation of the α-subunit and its insertion into the apical plasma membrane.

1999 ◽  
Vol 276 (2) ◽  
pp. F179-F190 ◽  
Author(s):  
Jørgen Frøkiaer ◽  
David Marples ◽  
Heinz Valtin ◽  
John F. Morris ◽  
Mark A. Knepper ◽  
...  

In the renal collecting duct, vasopressin acutely activates cAMP production, resulting in trafficking of aquaporin-2 water channels (AQP2) to the apical plasma membrane, thereby increasing water permeability. This acute response is modulated by long-term changes in AQP2 expression. Recently, a cAMP-responsive element has been identified in the AQP2 gene, raising the possibility that changes in cAMP levels may control AQP2 expression. To investigate this possibility, we determined AQP2 protein levels in a strain of mice, DI +/+ severe (DI), which have genetically high levels of cAMP-phosphodiesterase activity, and hence low cellular cAMP levels, and severe polyuria. Semiquantitative immunoblotting of membrane fractions prepared from whole kidneys revealed that AQP2 levels in DI mice were only 26 ± 7% (±SE) of those in control mice ( n = 10, P < 0.01). In addition, semiquantitative Northern blotting revealed a significantly lower AQP2 mRNA expression in kidneys from DI mice compared with control mice (43 ± 6% vs. 100 ± 10%; n = 6 in each group, P < 0.05). AQP3 levels were also reduced. The mice were polyuric and urine osmolalities were accordingly substantially lower in the DI mice than in controls (496 ± 53 vs. 1,696 ± 105 mosmol/kgH2O, respectively). Moreover, there was a linear correlation between urine osmolalities and AQP2 levels ( P < 0.05). Immunoelectron microscopy confirmed the markedly lower expression of AQP2 in collecting duct principal cells in kidneys of DI mice and, furthermore, demonstrated that AQP2 was almost completely absent from the apical plasma membrane. Thus expression of AQP2 and AQP2 trafficking were severely impaired in DI mice. These results are consistent with the view that in vivo regulation of AQP2 expression by vasopressin is mediated by cAMP.


2003 ◽  
Vol 284 (3) ◽  
pp. F584-F593 ◽  
Author(s):  
Sebastian Frische ◽  
Tae-Hwan Kwon ◽  
Jørgen Frøkiær ◽  
Kirsten M. Madsen ◽  
Søren Nielsen

The anion exchanger pendrin is present in the apical plasma membrane of type B and non-A-non-B intercalated cells of the cortical collecting duct (CCD) and connecting tubule and is involved in HCO[Formula: see text]secretion. In this study, we investigated whether the abundance and subcellular localization of pendrin are regulated in response to experimental metabolic acidosis and alkalosis with maintained water and sodium intake. NH4Cl loading (0.033 mmol NH4Cl/g body wt for 7 days) dramatically reduced pendrin abundance to 22 ± 4% of control values ( n = 6, P < 0.005). Immunoperoxidase labeling for pendrin showed reduced intensity in NH4Cl-loaded animals compared with control animals. Moreover, double-label laser confocal microscopy revealed a reduction in the fraction of cells in the CCD exhibiting pendrin labeling to 65% of the control value ( n = 6, P < 0.005). Conversely, NaHCO3 loading (0.033 mmol NaHCO3/g body wt for 7 days) induced a significant increase in pendrin expression to 153 ± 11% of control values ( n = 6, P < 0.01) with no change in the fraction of cells expressing pendrin. Immunoelectron microscopy revealed no major changes in the subcellular distribution, with abundant labeling in both the apical plasma membrane and the intracellular vesicles in all conditions. These results indicate that changes in pendrin protein expression play a key role in the well-established regulation of HCO[Formula: see text] secretion in the CCD in response to chronic changes in acid-base balance and suggest that regulation of pendrin expression may be clinically important in the correction of acid-base disturbances.


2002 ◽  
Vol 283 (4) ◽  
pp. F744-F754 ◽  
Author(s):  
Young-Hee Kim ◽  
Tae-Hwan Kwon ◽  
Sebastian Frische ◽  
Jin Kim ◽  
C. Craig Tisher ◽  
...  

Recent studies have demonstrated that a novel anion exchanger, pendrin, is expressed in the apical domain of type B intercalated cells in the mammalian collecting duct. The purpose of this study was 1) to determine the expression and distribution of pendrin along the collecting duct and connecting tubule of mouse and rat kidney and establish whether pendrin is expressed in the non-A-non-B intercalated cells and 2) to determine the intracellular localization of pendrin in the different populations of intercalated cells by immunoelectron microscopy. A peptide-derived affinity-purified antibody was generated that specifically recognized pendrin in immunoblots of rat and mouse kidney. Immunohistochemistry and confocal laser scanning microscopy demonstrated the presence of pendrin in apical domains of all type B intercalated cells in mouse and rat connecting tubule and collecting duct. In addition, strong pendrin immunostaining was observed in non-A-non-B intercalated cells. There was no labeling of type A intercalated cells. Immunoelectron microscopy demonstrated that pendrin was located in the apical plasma membrane and intracellular vesicles of both type B intercalated cells and non-A-non-B cells; the latter was identified by the presence of H+-ATPase in the apical plasma membrane. The results of this study demonstrate that both pendrin and H+-ATPase are expressed in the apical plasma membrane of non-A-non-B intercalated cells, suggesting that these cells are capable of both HCO[Formula: see text] and proton secretion. Furthermore, the presence of pendrin in both the apical plasma membrane and the apical intracellular vesicles of type B and non-A-non-B intercalated cells suggests that HCO[Formula: see text] secretion may be regulated by trafficking of pendrin between the two membrane compartments.


2003 ◽  
Vol 284 (1) ◽  
pp. F229-F241 ◽  
Author(s):  
Susan M. Wall ◽  
Kathryn A. Hassell ◽  
Ines E. Royaux ◽  
Eric D. Green ◽  
Judy Y. Chang ◽  
...  

Pendrin is an anion exchanger expressed in type B intercalated cells of the cortical collecting duct (CCD). Whether pendrin localizes to other nephron segments with intercalated cells is unknown. Moreover, whether pendrin is expressed in proximal tubule is debated. Thus the distribution of pendrin mRNA and protein expression in mouse kidney was investigated by using light and electron microscopic immunohistochemistry and quantitative real-time PCR. We observed that pendrin mRNA is expressed mainly in cortex. Within cortex, pendrin mRNA is at least fivefold higher in CCD and the connecting tubule (CNT) than in the other segments. Pendrin protein was observed in a subset of cells within the distal convoluted tubule as well as in type B and in non-A-non-B intercalated cells of the CNT and CCD. In type B intercalated cells, pendrin immunoreactivity was highest in apical cytoplasmic vesicles with little immunolabel along the apical plasma membrane. In non-A-non-B intercalated cells, intense pendrin immunoreactivity was detected along the apical plasma membrane. These differences in the subcellular distribution of pendrin immunolabel were confirmed by morphometric analysis. In conclusion, pendrin is expressed in the mouse distal convoluted tubule, CCD, and CNT along the apical plasma membrane of non-A-non-B intercalated cells and in subapical cytoplasmic vesicles of type B intercalated cells.


2009 ◽  
Vol 296 (3) ◽  
pp. F543-F555 ◽  
Author(s):  
Hye-Young Kim ◽  
Jill W. Verlander ◽  
Jesse M. Bishop ◽  
Brian D. Cain ◽  
Ki-Hwan Han ◽  
...  

Ammonia metabolism and transport are critical for acid-base homeostasis. The ammonia transporter family member Rh C glycoprotein (Rhcg) is expressed in distal renal tubular segments, and its expression is regulated in parallel with renal ammonia metabolism. However, there are inconsistencies in its reported subcellular distribution, with both apical and basolateral Rhcg reported in rat and human kidney and only apical expression in mouse kidney. Because the membrane location of Rhcg is critical for understanding its physiological role, we reassessed mouse Rhcg localization using refined immunolocalization methods. Two antibodies directed against different Rhcg-specific epitopes identified both apical and basolateral Rhcg immunolabel in mouse kidney. Immunogold electron microscopy both confirmed basolateral plasma membrane Rhcg expression and showed that apical immunolabel represented expression in both the apical plasma membrane and in subapical cytoplasmic vesicles. Immunoblots and Northern blots identified similar bands in Balb/c and C57BL/6 kidneys, suggesting basolateral Rhcg may result from alternative trafficking. Basolateral Rhcg intensity was strain dependent, with less basolateral Rhcg expression in the Balb/c mouse compared with the C57BL/6 mouse. In mice with collecting duct-specific Rhcg gene deletion, generated using Cre-loxP techniques, neither apical nor basolateral Rhcg immunolabel was identified in the collecting duct, confirming that basolateral Rhcg was the product of the same gene product as apical Rhcg. Although basolateral Rhcg expression differed between C57BL/6 and Balb/c mice, Rh B glycoprotein, which is exclusively basolateral, was expressed at similar levels in the two strains. We conclude that Rhcg is present in both the apical and basolateral plasma membrane in the mouse kidney, where it is likely to contribute to renal ammonia metabolism.


2000 ◽  
Vol 203 (1) ◽  
pp. 137-145 ◽  
Author(s):  
D. Brown ◽  
S. Breton

Many vertebrate transporting epithelia contain characteristic ‘mitochondria-rich’ cells that express high levels of a vacuolar proton-pumping ATPase (H(+)V-ATPase) on their plasma membrane and on intracellular vesicles. In the kidney cortex, A-cells and B-cells are involved in proton secretion and bicarbonate secretion, respectively, in the distal nephron and collecting duct. A-cells have an H(+)V-ATPase on their apical plasma membrane and on intracellular vesicles, whereas the cellular location of the H(+)V-ATPase can be apical, basolateral, bipolar or diffuse in B-cells. The rat epididymis and vas deferens also contain a distinct population of H(+)V-ATPase-rich epithelial cells. These cells are involved in generating a low luminal pH, which is involved in sperm maturation and in maintaining sperm in an immotile state during their passage through the epididymis and vas deferens. In both kidney and reproductive tract, H(+)V-ATPase-rich cells have a high rate of apical membrane recycling. H(+)V-ATPase molecules are transported between the cell surface and the cytoplasm in vesicles that have a well-defined ‘coat’ structure formed of the peripheral V(1) subunits of the H(+)V-ATPase. In addition, we propose that B-type intercalated cells have a transcytotic pathway that enables them to shuttle H(+)V-ATPase molecules from apical to basolateral plasma membrane domains. This hypothesis is supported by data showing that A-cells and B-cells have different intracellular trafficking pathways for LGP120, a lysosomal glycoprotein. LGP120 was found both on the basolateral plasma membrane and in lysosomes in B-cells, whereas no LGP120 was detectable in the plasma membrane of A-cells. We propose that the ‘polarity reversal’ of the H(+)V-ATPase in B-intercalated cells is mediated by a physiologically regulated transcytotic pathway that may be similar to that existing in some other cell types.


1981 ◽  
Vol 241 (5) ◽  
pp. F502-F508 ◽  
Author(s):  
M. A. Knepper ◽  
M. B. Burg

To investigate whether mineralocorticoids affect the intrinsic capacity of the proximal tubule to absorb sodium and fluid, rabbits were chronically treated a number of ways to systematically vary plasma concentrations of mineralocorticoid hormones. The rate of fluid absorption and tubule dimensions were measured in superficial S2 segments from these rabbits. Chronic administration of deoxycorticosterone acetate (DOCA) was associated with a 67% increase in fluid absorption and a 29% increase in cell volume per unit tubule length. However, neither adrenalectomy nor low sodium diet significantly affected either fluid absorption or cell volume. Furthermore, marked dietary sodium restriction prevented the response to DOCA. We conclude that the DOCA-induced increases in fluid absorption and cell volume do not result from a direct stimulation of the proximal tubular cells by the steroid but more likely are responses to systemic effects of DOCA administration that are dependent on the level of sodium intake. Thus, we find no evidence for a direct mineralocorticoid stimulation of sodium and fluid transport by the S2 portion of the proximal tubule.


1989 ◽  
Vol 256 (6) ◽  
pp. R1171-R1175 ◽  
Author(s):  
G. A. Sagnella ◽  
N. D. Markandu ◽  
M. G. Buckley ◽  
M. A. Miller ◽  
D. R. Singer ◽  
...  

The effects of gradual (50 mmol/day) increases in dietary sodium intake from 10 to 350 mmol/day on plasma atrial natriuretic peptide (ANP), aldosterone, and plasma renin activity (PRA) were studied in six normal subjects. With the increases in sodium intake there was a progressive increase in urinary sodium from 12.2 +/- 4.4 to 314.8 +/- 31.4 mmol/24 h; plasma ANP increased gradually from 9.9 +/- 1.1 to 23.3 +/- 2.2 pg/ml, with the increases being closely associated with the changes in cumulative sodium balance. Plasma aldosterone decreased significantly from 2,519.7 +/- 147.4 pmol/l on the 10 mmol/day to 1,393.3 +/- 125.4 pmol/l when the sodium intake was increased to 50 mmol/day and decreased further to 251.6 +/- 78.7 pmol/l by the end of the study. The changes in PRA paralleled those in plasma aldosterone with the exception of no significant change in plasma PRA within 24 h of the initial increase in sodium intake. This marked sensitivity in the responses of both the ANP and the renin-aldosterone system to small increases in sodium intake clearly points to their importance in the renal adaptations to alterations in dietary sodium intake.


2020 ◽  
Vol 318 (4) ◽  
pp. F956-F970 ◽  
Author(s):  
Wei-Ling Wang ◽  
Shih-Han Su ◽  
Kit Yee Wong ◽  
Chan-Wei Yang ◽  
Chin-Fu Liu ◽  
...  

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


Sign in / Sign up

Export Citation Format

Share Document