An intracranial chemical stimulation system for chronic or self-infusion

1963 ◽  
Vol 18 (1) ◽  
pp. 221-223 ◽  
Author(s):  
Robert D. Myers
2015 ◽  
Vol 2015 (0) ◽  
pp. _1P1-O05_1-_1P1-O05_2
Author(s):  
Masaru KOJIMA ◽  
Takahiro MOTOYOSHI ◽  
Mitsuhiro HORADE ◽  
Kazuto KAMIYAMA ◽  
Kenichi Ohara ◽  
...  

2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S262
Author(s):  
Masaru Kojima ◽  
Takahiro Motoyoshi ◽  
Kenichi Ohara ◽  
Mitsuhiro Horade ◽  
Yasushi Mae ◽  
...  

1975 ◽  
Vol 20 (12) ◽  
pp. 923-924
Author(s):  
MADGE E. SCHEIBEL ◽  
ARNOLD B. SCHEIBEL

1981 ◽  
Vol 20 (03) ◽  
pp. 169-173
Author(s):  
J. Wagner ◽  
G. Pfurtscheixer

The shape, latency and amplitude of changes in electrical brain activity related to a stimulus (Evoked Potential) depend both on the stimulus parameters and on the background EEG at the time of stimulation. An adaptive, learnable stimulation system is introduced, whereby the subject is stimulated (e.g. with light), whenever the EEG power is subthreshold and minimal. Additionally, the system is conceived in such a way that a certain number of stimuli could be given within a particular time interval. Related to this time criterion, the threshold specific for each subject is calculated at the beginning of the experiment (preprocessing) and adapted to the EEG power during the processing mode because of long-time fluctuations and trends in the EEG. The process of adaptation is directed by a table which contains the necessary correction numbers for the threshold. Experiences of the stimulation system are reflected in an automatic correction of this table. Because the corrected and improved table is stored after each experiment and is used as the starting table for the next experiment, the system >learns<. The system introduced here can be used both for evoked response studies and for alpha-feedback experiments.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


Sign in / Sign up

Export Citation Format

Share Document