Interaction between sodium and chloride transport in canine tracheal mucosa

1979 ◽  
Vol 46 (1) ◽  
pp. 111-119 ◽  
Author(s):  
F. J. Al-Bazzaz ◽  
Q. Al-Awqati

Canine tracheal mucosae were dissected and mounted as flat sheets in Ussing chambers. Unidirectional isotope fluxes of 22Na and 36Cl were performed across paired mucosae from the same animal. The average spontaneous potential difference was 42 + 1.2 mV (mean +/- SE) lumen negative. The short-circuit current (SCC) 3.09 +/- 0.36 mueq/cm2.h was accounted for by a net Cl secretion of 2.46 +/- 0.26 mueq/cm2.h toward the mucosa and net Na absorption of 0.46 +/- 0.13 mueq/cm2.h toward submucosa. Removal of Cl depressed SCC but had no effect on unidirectional or net Na transport (n = 7). By contrast, removal of Na (n = 6) or the addition of ouabain (n = 7) abolished net Cl secretion and greatly reduced SCC. Theophylline (n = 6) added to the submucosal bath no significant effect on Na transport but stimulated SCC and Cl secretion, suggesting hormonal regulation of Cl transport. The results suggest that the active transport of Na and Cl in this epithelium occur by electrically conductive pathways, i.e., the transport is “electrogenic.” Further it appears that Na transport is independent of the presence of Cl but that Cl transport depends on some parameter of active Na transport.

1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


1989 ◽  
Vol 257 (1) ◽  
pp. C45-C51 ◽  
Author(s):  
S. M. O'Grady ◽  
P. J. Wolters

Porcine gallbladder, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasma-like Ringer solution generates a serosal positive transepithelial potential of 4-7 mV and a short-circuit current (Isc) of 50-120 microA/cm2. Substitution of Cl with gluconate or HCO3 with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) results in a 50% decrease in Isc. Treatment with 1 mM amiloride (mucosal side) or 0.1 mM acetazolamide (both sides) causes 25-27% inhibition of the Isc. Mucosal addition of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits the Isc by 17%. Serosal addition of 0.1 mM bumetanide inhibits the Isc by 28%. Amiloride (1 mM) inhibits the net transepithelial fluxes of Na and Cl by 55 and 41%, respectively. Substitution of Cl with gluconate inhibits the net Na flux by 50%, whereas substitution of HCO3 with HEPES inhibits 85-90% of the net Na flux and changes Cl absorption to net secretion. Based on these results, it is hypothesized that Na and Cl transport across the apical membrane is mediated by two pathways, Na-H/Cl-HCO3 exchange and Na-HCO3 cotransport. Partial recycling of Cl and HCO3 presumably occurs through a Cl conductive pathway and Cl-HCO3 exchange, respectively, in the apical membrane. This results in net Na absorption, which accounts for most of the Isc observed under basal conditions. The effect of bumetanide on the basolateral membrane and the fact that Cl secretion occurs when HCO3 is absent suggests that Cl secretion involves a basolateral NaCl or Na-K-Cl cotransport system arranged in series with a Cl conductive pathway in the apical membrane.


1981 ◽  
Vol 240 (1) ◽  
pp. F25-F29
Author(s):  
O. A. Candia ◽  
H. F. Schoen ◽  
L. Low ◽  
S. M. Podos

Two new diuretic agents, piretanide and MK-196, inhibited short-circuit current (SCC) across the isolated frog corneal epithelium. The effect is explained as an inhibition of active Cl transport. A definite decrease in SCC and an increase in electrical resistance was observed with both diuretics in concentrations as low as 10(-6) M. Piretanide, at 10(-4) M, reduced the SCC by 90%, reduced th unidirectional forward Cl flux from 0.60 to 0.28 mueq x h-1 x cm-2, and increased the resistance by 60%. There was no effect on the Cl backflux. At 10(-4) M, MK-196 reduced the SCC by 83% and increased the resistance by 72%, from 1.68 to 2.91 k omega x cm2. Replacement of Cl by SO4 in the bathing solutions resulted in a larger increase in resistance, from 1.68 to 3.80 k omega x cm2. The diuretics had no effect on active Na transport across the corneal epithelium. After the permeability of the apical side was increased by amphotericin B, the drugs could not inhibit the Cl-originated SCC. These results suggest that piretanide and MK-196 selectively inhibit active Cl transport in the cornea by blocking Cl permeability of the apical side of the epithelial cells.


1985 ◽  
Vol 63 (1) ◽  
pp. 37-41 ◽  
Author(s):  
J. Proux ◽  
B. Proux ◽  
J. Phillips

Corpus cardiacum (CC) of locusts contains a potent stimulant of rectal Cl transport, i.e., chloride transport stimulating hormone (CTSH). Extracts of other locust tissues which contain neuroendocrine cells were assayed for their ability to stimulate Cl-dependent, short-circuit current (Isc) across recta mounted in Ussing chambers. Dose–response curves indicated that only brain (particularly the pars intercerebralis, PI) contained substantial stimulatory activity, but this was still at very low concentrations compared with CTSH activity in CC. Destruction of either the PI or the nerve tract from PI to CC (i.e., NCC I) reduced CTSH levels in the CC. In contrast, destruction of lateral neurosecretory cells (NSCs) of the brain had no effect. The results suggest that CTSH is synthesized in NSCs of the PI and is transported down NCC I to the CC where it may mature to a more active form.


1991 ◽  
Vol 261 (6) ◽  
pp. R1533-R1541 ◽  
Author(s):  
W. Clauss ◽  
V. Dantzer ◽  
E. Skadhauge

The regulation of Na and Cl transport in hen colon by mineralocorticoids was investigated with isolated epithelia in vitro by histological and electrophysiological techniques. The electrogenic transport of Na and Cl was measured in Ussing chambers by the short-circuit current technique and was identified by the specific inhibitors amiloride and bumetanide or by the secretagogue theophylline. Hens were maintained either on low (LS)- or on high-NaCl diets (HS), and the plasma aldosterone (PA) levels of these groups were measured with radioimmunoassay. A group of HS hens received injections of aldosterone at a 6-h schedule before experiments. A group of LS hens was resalinated, and experiments were carried out at a 24-h interval for up to 3 days after resalination. The LS diet stimulated PA levels ninefold, compared with HS hens. Na transport was modulated by the hormonal stimulus in a way that the apical Na entry switched from an electrogenic Na-amino acid-hexose cotransport system completely to an amiloride-sensitive Na channel. Electrogenic Cl secretion was induced by theophylline and was inhibited by bumetanide. NaCl deprivation, resalination or aldosterone injection modulated electrogenic Cl secretion in parallel between 7 (HS) and 14.4 mu eq.cm-2.h-1 (LS), with pronounced alteration in tissue conductance. These findings reveal a new action of aldosterone that, besides stimulating Na absorption, also directly or indirectly modulates Cl secretion.


1981 ◽  
Vol 90 (1) ◽  
pp. 123-142
Author(s):  
M. M. P. RAMOS ◽  
J. C. ELLORY

1. The tissue was found to have a serosa negative potential, and short-circuit currents equivalent to the net Cl transport. 2. A significant part of the Cl uptake was Na dependent and a similar fraction of the Na uptake was Cl dependent. 3. Short-circuit current and uptake of both ions were inhibited by loop diuretics and analogues. 4. I80 and P.D. were abolished by ouabain. 5. The observations are consistent with the idea of a coupled NaCl entry into the cell, using the energy inherent in the Na gradient; Na being pumped out of the cells by the Na pump and followed electrically by Cl−. Net chloride transport and the serosa negative potential would be a consequence of the permselective properties of the junctions allowing Na but not Cl to recycle back to the mucosal solution.


1991 ◽  
Vol 260 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
B. R. Grubb

In the fowl cecum in vitro, the influence of glucose and the three most prevalent naturally occurring volatile fatty acids (acetate, propionate, butyrate) on short-circuit current (Isc), electrical resistance, and transport of Na and Cl was determined. When glucose, acetate, or butyrate was present, ion transport was characterized by electrogenic Na absorption, greater than 65% of which was amiloride inhibitable, and Cl secretion, which also was electrogenic. Isc could be completely accounted for by net fluxes of Na and Cl. When glucose, acetate, or butyrate (10 mM both sides) was included in the incubation medium, cecal tissue maintained its Isc and a constant rate of net Na absorption and Cl secretion for a 5-h period. When no substrate was present or propionate was included in the medium, a marked fall in Isc and net Na and Cl fluxes was seen. Glucose caused an increase in Isc when added only to the serosal side. As 3-O-methylglucose (not metabolized) was not effective in stimulating Isc of the cecum (serosal or mucosal addition), it appeared that glucose increased Isc by acting as an energy substrate for active Na transport. Acetate and butyrate appeared to be equally effective in stimulating Na transport and Isc when placed on either side of the membrane. When the preparation was supplied with glucose (serosal side) and acetate was added to the mucosal side, no further stimulation of Isc occurred. Thus it appeared that acetate and butyrate were acting as substrates for active Na transport rather than stimulating Na transport by some other mechanism such as a cotransport with Na.(ABSTRACT TRUNCATED AT 250 WORDS)


1978 ◽  
Vol 234 (4) ◽  
pp. F297-F301
Author(s):  
O. A. Candia ◽  
H. F. Schoen

Frog corneas were mounted in a modified Ussing chamber and short-circuit current (SCC) and unidirectional Cl fluxes were measured. Bumetanide, a loop diuretic, at concentrations as low as 10(-7) M, reduced the SCC 29%. At 10(-5) M, bumetanide reduced the SCC 96% and increased transcorneal electrical resistance 20-51%. The forward Cl flux declined from 0.71 +/- 0.04 to 0.20 +/- 0.03 mueq/h.cm2 (n, 7), while, in separate experiments, the backward Cl flux did not change significantly (from 0.22 +/- 0.03 to 0.23 +/- 0.04; n, 7). When corneas were mounted in Cl-free Ringer and the net Na transport was stimulated with amphotericin B, 10(-5) M bumetanide had no effect on the SCC. In separate experiments the effect of 10(-5) M bumetanide on the O2 consumption was measured in a stirrer bath assembly. Bumetanide decreased the O2 consumption from 352 +/- 14 to 297 +/- 19 microliter/h.cm2 (significantly different from sham-treated controls). This decrease was similar to that obtained with furosemide or when Cl was removed from the bathing medium. We infer from these results that bumetanide is a selective inhibitor of active Cl transport in the bullfrog cornea.


1991 ◽  
Vol 261 (6) ◽  
pp. L456-L461 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O'Grady

When the equine tracheal epithelium is mounted in Ussing chambers and bathed in plasma-like Ringer solution, the tissue generates a lumen-negative transepithelial potential (PD) of 22 mV and a short-circuit current (Isc) of 70-200 microA/cm2. Mucosal addition of 10 microM histamine produces a transient increase in the Isc followed by a return to baseline or below. Mucosal addition of 2 microM diphenhydramine inhibits the Isc response to mucosal histamine, whereas 100 microM mucosal cimetidine produces no effect. The average initial increases in Isc over time for mucosal vs. serosal histamine addition are significantly different (17.32 +/- 2.8 and 3.76 +/- 0.69 microA/min, respectively). Pretreatment with mucosal amiloride significantly prolongs the effect of mucosal histamine on Isc over a 20-min period from 4.73 +/- 0.33 to 15.48 +/- 3.16 microA. When Cl is replaced by gluconate, mucosal histamine addition results in a gradual decrease in Isc and significantly reduces the effect of mucosal amiloride on Isc from 80.8% to 54.9%. Mucosal histamine inhibits the net transepithelial Na flux by 42% and stimulates the secretion of Cl by 106%. Subsequent addition of serosal bumetanide decreases net Cl secretion by 70% These results suggest that histamine stimulates bumetanide-sensitive Cl secretion and inhibits amiloride-sensitive Na absorption; these effects are mediated by H1 receptors at the apical membrane surface


1986 ◽  
Vol 61 (3) ◽  
pp. 1065-1070 ◽  
Author(s):  
R. J. Corrales ◽  
D. L. Coleman ◽  
D. B. Jacoby ◽  
G. D. Leikauf ◽  
H. L. Hahn ◽  
...  

Sheets of trachea from ferret and cat were mounted in Ussing chambers and continuously short circuited. Under resting conditions, in both the cat and ferret there was little or no Cl secretion, and Na absorption accounted for most of the short-circuit current (Isc). Ouabain (10(-4) M, serosal bath) reduced Isc to zero in 30–60 min. This decline was matched by a decrease in net Na absorption. Amiloride (10(-4) M, luminal bath) caused a significant decrease in Isc and conductance (G) in both species. Bumetanide (10(-4) M, serosal bath) had negligible effects on Isc and G. In both species, isoproterenol increased Isc by stimulating Cl secretion. Methacholine induced equal amounts of Na and Cl secretion, with little change in Isc. In the cat, prostaglandins E2 and F2 alpha and bradykinin increased Isc, responses which were abolished in Cl-free medium. In open-circuited cat tissues, Na flux from the serosal to mucosal side was measured simultaneously with the secretion of nondialyzable 35S. Prostaglandins E1, E2, and F2 alpha, histamine, bradykinin, methacholine and isoproterenol all increased both Na and 35S-mucin secretion.


Sign in / Sign up

Export Citation Format

Share Document