Chloride transport inhibition by piretanide and MK-196 in bullfrog corneal epithelium

1981 ◽  
Vol 240 (1) ◽  
pp. F25-F29
Author(s):  
O. A. Candia ◽  
H. F. Schoen ◽  
L. Low ◽  
S. M. Podos

Two new diuretic agents, piretanide and MK-196, inhibited short-circuit current (SCC) across the isolated frog corneal epithelium. The effect is explained as an inhibition of active Cl transport. A definite decrease in SCC and an increase in electrical resistance was observed with both diuretics in concentrations as low as 10(-6) M. Piretanide, at 10(-4) M, reduced the SCC by 90%, reduced th unidirectional forward Cl flux from 0.60 to 0.28 mueq x h-1 x cm-2, and increased the resistance by 60%. There was no effect on the Cl backflux. At 10(-4) M, MK-196 reduced the SCC by 83% and increased the resistance by 72%, from 1.68 to 2.91 k omega x cm2. Replacement of Cl by SO4 in the bathing solutions resulted in a larger increase in resistance, from 1.68 to 3.80 k omega x cm2. The diuretics had no effect on active Na transport across the corneal epithelium. After the permeability of the apical side was increased by amphotericin B, the drugs could not inhibit the Cl-originated SCC. These results suggest that piretanide and MK-196 selectively inhibit active Cl transport in the cornea by blocking Cl permeability of the apical side of the epithelial cells.

1978 ◽  
Vol 234 (4) ◽  
pp. F297-F301
Author(s):  
O. A. Candia ◽  
H. F. Schoen

Frog corneas were mounted in a modified Ussing chamber and short-circuit current (SCC) and unidirectional Cl fluxes were measured. Bumetanide, a loop diuretic, at concentrations as low as 10(-7) M, reduced the SCC 29%. At 10(-5) M, bumetanide reduced the SCC 96% and increased transcorneal electrical resistance 20-51%. The forward Cl flux declined from 0.71 +/- 0.04 to 0.20 +/- 0.03 mueq/h.cm2 (n, 7), while, in separate experiments, the backward Cl flux did not change significantly (from 0.22 +/- 0.03 to 0.23 +/- 0.04; n, 7). When corneas were mounted in Cl-free Ringer and the net Na transport was stimulated with amphotericin B, 10(-5) M bumetanide had no effect on the SCC. In separate experiments the effect of 10(-5) M bumetanide on the O2 consumption was measured in a stirrer bath assembly. Bumetanide decreased the O2 consumption from 352 +/- 14 to 297 +/- 19 microliter/h.cm2 (significantly different from sham-treated controls). This decrease was similar to that obtained with furosemide or when Cl was removed from the bathing medium. We infer from these results that bumetanide is a selective inhibitor of active Cl transport in the bullfrog cornea.


1979 ◽  
Vol 46 (1) ◽  
pp. 111-119 ◽  
Author(s):  
F. J. Al-Bazzaz ◽  
Q. Al-Awqati

Canine tracheal mucosae were dissected and mounted as flat sheets in Ussing chambers. Unidirectional isotope fluxes of 22Na and 36Cl were performed across paired mucosae from the same animal. The average spontaneous potential difference was 42 + 1.2 mV (mean +/- SE) lumen negative. The short-circuit current (SCC) 3.09 +/- 0.36 mueq/cm2.h was accounted for by a net Cl secretion of 2.46 +/- 0.26 mueq/cm2.h toward the mucosa and net Na absorption of 0.46 +/- 0.13 mueq/cm2.h toward submucosa. Removal of Cl depressed SCC but had no effect on unidirectional or net Na transport (n = 7). By contrast, removal of Na (n = 6) or the addition of ouabain (n = 7) abolished net Cl secretion and greatly reduced SCC. Theophylline (n = 6) added to the submucosal bath no significant effect on Na transport but stimulated SCC and Cl secretion, suggesting hormonal regulation of Cl transport. The results suggest that the active transport of Na and Cl in this epithelium occur by electrically conductive pathways, i.e., the transport is “electrogenic.” Further it appears that Na transport is independent of the presence of Cl but that Cl transport depends on some parameter of active Na transport.


1985 ◽  
Vol 249 (3) ◽  
pp. F424-F431 ◽  
Author(s):  
K. Drewnowska ◽  
T. U. Biber

Transepithelial Cl influx and efflux were measured in pairs of frog skin (Rana pipiens) matched according to short-circuit current, tissue conductance, and transepithelial potential (TEP). The skins were bathed symmetrically in NaCl Ringer and voltage clamped at TEP values ranging from -60 to +60 mV. At 0 TEP, Cl influx and net inward Cl movement (in neq X h-1 X cm-2) were, respectively, 961 +/- 116 and 463 +/- 68 in NaCl Ringer, 509 +/- 52 and 202 +/- 53 in amiloride-treated skins, 4,168 +/- 777 and 1,444 +/- 447 in theophylline-treated skins, and 587 +/- 38 and 97 +/- 44 in Na-free Ringer. A correlation was discovered between short-circuit current and Cl fluxes corresponding to a 2:6:1 relationship between changes in active Na transport and active Cl transport. Deviations from the predicted Cl flux ratio indicate the presence of exchange diffusion in the range of spontaneously occurring TEPs, in contrast to observations on R. temporaria and R. esculenta. The experiments indicate that a substantial portion of transepithelial Cl movement proceeds transcellularly 1) via active Cl transport that is Na dependent, amiloride sensitive, stimulated by theophylline, and apparently correlated with active Na transport, and 2) by means of exchange diffusion that not only occurs under short-circuit conditions but also at positive TEPs. It is possible to explain both the exchange diffusion and the properties of active Cl transport by a Cl-HCO3 exchange system at the apical side of the transporting cell that interacts with a Na-H exchange mechanism, a notion consistent with the recent observation of an amiloride-induced decrease in intracellular pH.


1981 ◽  
Vol 90 (1) ◽  
pp. 123-142
Author(s):  
M. M. P. RAMOS ◽  
J. C. ELLORY

1. The tissue was found to have a serosa negative potential, and short-circuit currents equivalent to the net Cl transport. 2. A significant part of the Cl uptake was Na dependent and a similar fraction of the Na uptake was Cl dependent. 3. Short-circuit current and uptake of both ions were inhibited by loop diuretics and analogues. 4. I80 and P.D. were abolished by ouabain. 5. The observations are consistent with the idea of a coupled NaCl entry into the cell, using the energy inherent in the Na gradient; Na being pumped out of the cells by the Na pump and followed electrically by Cl−. Net chloride transport and the serosa negative potential would be a consequence of the permselective properties of the junctions allowing Na but not Cl to recycle back to the mucosal solution.


1988 ◽  
Vol 255 (6) ◽  
pp. C724-C730 ◽  
Author(s):  
T. C. Chu ◽  
O. A. Candia

Norepinephrine, 10(-6) M, reduced Cl- transport by 26% in 75% of isolated frog corneal epithelia. This inhibition was not previously reported. Since beta-adrenergic agonists are known to only stimulate Cl- transport, the action of specific alpha 1- and alpha 2-agonists on Cl- transport and electrical parameters was investigated. Phenylephrine, an alpha 1-agonist always stimulated the Cl(-)-dependent short-circuit current (Isc), but less than the beta-agonists. UK-14,304-18 (UK), a selective alpha 2-agonist, reduced both the Isc (by 31% at 10(-5) M) and the stroma-to-tear unidirectional Cl- flux. UK hyperpolarized the apical membrane potential difference and increased the transepithelial resistance and apical-to-basolateral resistance ratio. UK reduced forskolin-stimulated adenylate cyclase activity by 36%. The electrophysiological effects of UK are consistent with a reduction of the Cl- permeability at the apical membrane. Pretreatment with UK sensitized the tissue for a greater effect by forskolin. Results show that the frog corneal epithelium also possesses alpha 1- and alpha 2-receptors, the latter negatively coupled to the adenylate cyclase system. Cl- transport is thus regulated by an interaction between the positive effects of beta- and alpha 1-stimulation and the negative influence of alpha 2-stimulation.


1990 ◽  
Vol 259 (2) ◽  
pp. C215-C223 ◽  
Author(s):  
O. A. Candia

Forskolin (and other Cl- secretagogues) does not affect the very small Na(+)-originated short-circuit current (Isc) across frog corneal epithelium bathed in Cl- free solutions. However, forskolin in combination with increased PCO2 bubbling of the solutions (5-20% CO2) stimulated Isc proportionally to PCO2 to a maximum of approximately 8 microA/cm2. This current could be eliminated and reinstated by sequentially changing the gas composition of the bubbling to 100% air and 20% CO2-80% air. The same effects were observed when PCO2 changes were limited to the apical-side solution. Stroma-to-tear HCO3- movement was deemed unlikely, since the increase in Isc was observed with a HCO3(-)-free solution on the stromal side and CO2 gassing limited to the tear side. From the effects of ouabain and tryptamine, at least 80% of the Isc across the basolateral membrane can be accounted for by the Na+ pump current plus K+ movement from cell to bath. Methazolamide also inhibited Isc. Current across the apical membrane cannot be attributed to an electronegative Na(+)-HCO3- symport given the insensitivity of Isc to a disulfonic stilbene and the fact that stroma-to-tear Na+ fluxes did not increase on stimulation of Isc. The tear-to-stroma Na+ flux also remained unaltered, negating an increased apical bath-to-cell Na+ flow. The forskolin-20% CO2 manipulation produced a depolarization of the intracellular potential, a reduction in the apical-to-basolateral resistance ratio, and a decrease in transepithelial resistance.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 69 (5) ◽  
pp. 1883-1892 ◽  
Author(s):  
M. Li ◽  
S. K. Hong ◽  
J. M. Goldinger ◽  
M. E. Duffey

We examined the interaction of heptanol and hydrostatic pressure on Na+ and Cl- transport in isolated toad skin. In the presence of Cl-, heptanol decreased short-circuit current (Isc) and total transepithelial resistance (Rt). However, in the absence of Cl- in the mucosal bath, heptanol increased Rt, although it retained the same inhibitory effect on Isc. When transepithelial active Na+ transport was blocked by amiloride, heptanol had no effect on Isc whether or not Cl- was present, whereas it decreased the shunt resistance (Rs) only in the presence of Cl- in the mucosal bath. Moreover, this effect of heptanol on Rs was significantly smaller in the presence of diphenylamine-2-carboxylate (DPC), a known Cl- channel blocker. Pressure also decreased Isc through inhibition of active Na+ transport, but it increased Rs. When heptanol and pressure were applied together, their inhibitory effects on Isc were additive, but their effects on Rs were antagonistic. Furthermore, when a transepithelial Cl- current was produced by reducing the Cl- concentration of the serosal bath, heptanol stimulated this current, which was reversibly inhibited by pressure or DPC addition to the mucosal bath. When the heptanol-stimulated Cl- current was first inhibited by pressure, subsequent DPC addition had less or no effect. These results suggest that one site of an antagonistic interaction of heptanol and pressure in toad skin is an apical membrane Cl- conductance.


1995 ◽  
Vol 268 (3) ◽  
pp. R605-R613 ◽  
Author(s):  
W. M. Weber ◽  
U. Blank ◽  
W. Clauss

The dorsal integument of the medical leech Hirudo medicinalis exhibits a marked amiloride-sensitive Na+ absorption. With 20 mM Na+ in the apical solution, the transepithelial short-circuit current (Isc) was approximately 40% higher than with 115 mM Na+, whereas the transepithelial potential (VT) with 20 mM Na+ was -35.7 +/- 4.5 and -20.6 +/- 2.6 mV with 115 mM Na+. Amiloride (100 microM) inhibition at 20 mM apical Na+ was also significantly larger than with 115 mM Na+ in the solution. Benzamil (100 microM) showed additional inhibition after amiloride. Large transient overshooting currents occurred only when 115 mM Na+ was added after some minutes of Na(+)-free apical solution. Addition of adenosine 3',5'-cyclic monophosphate (cAMP) to the serosal side in the presence of 115 mM apical Na+ nearly doubled Isc. This cAMP effect was reduced to only 20% in the presence of 20 mM Na+. Guanosine 3',5'-cyclic monophosphate (cGMP) slightly increased Isc, whereas ATP showed biphasic potency. Removal of calcium from the apical side resulted in a large stimulation of amiloride-sensitive Isc only in the presence of 115 mM Na+. When currents were activated with cAMP, a deprivation of Ca2+ modestly reduced the amiloride-sensitive Isc. The Na+ channel of leech integument was found highly selective for Na+ over other monovalent cations. The permeability ratio for Na+ over K+ was approximately 30:1; the selectivity relationship for the investigated cations was Na+ > Li+ > NH4+ > K+ approximately Cs+ approximately Rb+.


1985 ◽  
Vol 63 (1) ◽  
pp. 37-41 ◽  
Author(s):  
J. Proux ◽  
B. Proux ◽  
J. Phillips

Corpus cardiacum (CC) of locusts contains a potent stimulant of rectal Cl transport, i.e., chloride transport stimulating hormone (CTSH). Extracts of other locust tissues which contain neuroendocrine cells were assayed for their ability to stimulate Cl-dependent, short-circuit current (Isc) across recta mounted in Ussing chambers. Dose–response curves indicated that only brain (particularly the pars intercerebralis, PI) contained substantial stimulatory activity, but this was still at very low concentrations compared with CTSH activity in CC. Destruction of either the PI or the nerve tract from PI to CC (i.e., NCC I) reduced CTSH levels in the CC. In contrast, destruction of lateral neurosecretory cells (NSCs) of the brain had no effect. The results suggest that CTSH is synthesized in NSCs of the PI and is transported down NCC I to the CC where it may mature to a more active form.


1998 ◽  
Vol 201 (11) ◽  
pp. 1753-1762 ◽  
Author(s):  
T M Clark ◽  
T K Hayes ◽  
G M Holman ◽  
K W Beyenbach

The mechanism of action of synthetic CCRF-DP, the corticotropin-releasing factor (CRF)-related diuretic peptide of the salt marsh mosquito Culex salinarius, was investigated in isolated Malpighian tubules of the yellow fever mosquito Aedes aegypti. A low concentration of CCRF-DP (10(-9)mol l-1) caused a small but insignificant increase in transepithelial secretion of NaCl and fluid, but significantly reduced transepithelial voltage and resistance without a change in short-circuit current, pointing to the stimulation of passive Cl- transport through the paracellular pathway as the principal mechanism of a mild diuresis. Significant changes in voltage and resistance but not in short-circuit current were duplicated by the ionophore A23187 (0.4 micromol l-1), suggesting Ca2+ as a second messenger at 10(-9)mol l-1 CCRF-DP. A high concentration of CCRF-DP (10(-7)mol l-1) significantly increased transepithelial secretion of NaCl and fluid and significantly increased short-circuit current, pointing to the stimulation of active Na+ transport through the transcellular pathway as the mechanism of a strong diuresis. This effect was mimicked by dibutyryl-cAMP, suggesting cAMP as a second messenger at 10(-7)mol l-1 CCRF-DP. Dibutyryl-cGMP had no effects. These results suggest dose-dependent, receptor-mediated effects of CCRF-DP that target discrete transport pathways via discrete second messengers: low concentrations of CCRF-DP cause a mild diuresis, apparently via Ca2+-mediated effects on paracellular Cl- transport, and high concentrations cause a strong diuresis via cAMP-mediated effects on active transcellular Na+ transport in addition to the effects on the paracellular pathway.


Sign in / Sign up

Export Citation Format

Share Document