Alveolar pressure-airflow characteristics in humans breathing air, He-O2, and SF6-O2

1981 ◽  
Vol 51 (4) ◽  
pp. 1033-1037 ◽  
Author(s):  
A. S. Slutsky ◽  
J. M. Drazen ◽  
C. F. O'Cain ◽  
R. H. Ingram

In a system of rigid tubes under steady flow conditions, the coefficient of friction [CF = 2 delta P/(rho V2/A2)] (where delta P is pressure drop, rho is density, V is flow, and A is cross-sectional area) should be a unique function of Reynolds' number (Re). Recently it has been shown that at any given Re, the value of CF using transpulmonary pressure (PL) was lower when breathing He-O2 compared with air (Lisboa et al., J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 878–885, 1980). One explanation for this discontinuity is that PL includes the pressure drop due to tissue viscance, which is independent of V, and thus would lead to an overestimate of CF on air compared with He-O2 at any Re. We tested this hypothesis by measuring V related to alveolar pressure, rather than PL, in normal subjects breathing air, He-O2, and SF6-O2. In each subject, for a given Re, CF was greatest breathing SF6-O2 and lowest breathing He-O2, similar to results using PL. Thus tissue viscance is not the sole cause of the discontinuous plot of CF vs. Re, and this phenomenon must be due to other factors, such as changing geometry or nonsteady behavior.

Author(s):  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Je-Chin Han

Abstract Serpentine, varying aspect ratio cooling passages, are typically used in cooling advanced gas turbine blades. These passages are usually connected by sharp, 180-deg bends. In the open literature, most of the internal cooling studies use a fixed cross-sectional area for multi-pass channels. Studies that use varying aspect ratio channels, along with a guide (turn) vane to direct the flow with turning, are scarce. In general, studies show that the incorporation of turning vanes in the bend region of a multi-pass channel keeps the heat transfer rate high while reducing pressure loss. Therefore, the current study investigates the effect of using different guide (turn) vane designs on both the detailed heat transfer distribution and pressure loss in a multi-pass channel with an aspect ratio of (4:1) in the entry passage and (2:1) in the second passage downstream of the vane (s). The first vane configuration is one solid-vane with a semi-circular cross-section connecting the two flow passages. The second configuration has three broken-vanes with a quarter-circular cross-section; two broken vanes are located downstream in the first passage (entering the turn), and one broken vane is upstream in the second passage (exiting the turn). For a Reynolds number range 15,000 to 45,000, detailed heat transfer distributions were obtained on all surfaces within the flow passages by using a transient liquid crystal method. The results show that the turning vane configurations have large effects on the heat transfer, in the turning bend and second passage, and the overall pressure drop. Results show that including the semi-circular vane in the turning region of a multi-pass channel enhanced the overall heat transfer by around 29% with a reduction in pressure loss by around 20%. Moreover, results show that the quarter-circular vane design provides higher overall averaged heat transfer enhancement than the semi-circular vane design by around 9% with penalty of higher pressure drop by 6%, which yields higher thermal performance by 7%, over the Reynolds number range.


1993 ◽  
Vol 75 (6) ◽  
pp. 2595-2601 ◽  
Author(s):  
R. K. Albert ◽  
W. J. Lamm ◽  
D. A. Rickaby ◽  
A. al-Tinawi ◽  
C. A. Dawson

We utilized microfocal fluoroscopic angiography to study the influence of lung inflation on small (0.2- to 1.3-mm-diam) pulmonary arteries in isolated left lower lobes from dog lungs during both flow and no-flow conditions. Alveolar pressure, which in this preparation was equal to transpulmonary pressure, was set at 2, 8, or 14 mmHg while vascular pressure was varied from 0 to 24 mmHg. The diameters of these small arterial vessels increased with lung inflation. No differences were observed between the results obtained during flow and no-flow conditions. Thus, arteries in this diameter range can be considered as extra-alveolar, and the effect of lung inflation on these small extra-alveolar arteries was qualitatively similar to that previously described for larger extra-alveolar vessels. Quantitatively, the degree of vessel distension was about the same per unit increase in transpulmonary pressure at constant vascular pressure as for a change in vascular pressure at constant transpulmonary pressure. Accordingly, inflation produced a decrease in perivascular pressure surrounding these small arteries that was approximately equal to the increase in transpulmonary pressure.


2016 ◽  
Vol 2016.51 (0) ◽  
pp. 181-182
Author(s):  
Kota KOBAYASHI ◽  
Yosuke HATA ◽  
Takashi FUKUE ◽  
Koichi HIROSE ◽  
Fumiaki KUSAKABE ◽  
...  

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
V. S. Duryodhan ◽  
Shiv Govind Singh ◽  
Amit Agrawal

Aspect ratio is an important parameter in the study of flow through noncircular microchannel. In this work, three-dimensional numerical study is carried out to understand the effect of cross aspect ratio (height to width) on flow in diverging and converging microchannels. Three-dimensional models of the diverging and converging microchannels with angle: 2–14 deg, aspect ratio: 0.05–0.58, and Reynolds number: 130–280 are employed in the simulations with water as the working fluid. The effects of aspect ratio on pressure drop in equivalent diverging and converging microchannels are studied in detail and correlated to the underlying flow regime. It is observed that for a given Reynolds number and angle, the pressure drop decreases asymptotically with aspect ratio for both the diverging and converging microchannels. At small aspect ratio and small Reynolds number, the pressure drop remains invariant of angle in both the diverging and converging microchannels; the concept of equivalent hydraulic diameter can be applied to these situations. Onset of flow separation in diverging passage and flow acceleration in converging passage is found to be a strong function of aspect ratio, which has not been shown earlier. The existence of a critical angle with relevance to the concept of equivalent hydraulic diameter is identified and its variation with Reynolds number is discussed. Finally, the effect of aspect ratio on fluidic diodicity is discussed which will be helpful in the design of valveless micropump. These results help in extending the conventional formulae made for uniform cross-sectional channel to that for the diverging and converging microchannels.


2009 ◽  
Author(s):  
Sang Hyun Park ◽  
Gerald L. Morrison

In the previous studies of slotted flow meters, the repeatibility and reproducibility were studied under different flow conditions and different configurations. In accordance with these work, the present study examines the affects of the distance between the slotted plate. The preset 5D distance is expanded to the 10D. The flow coefficient, KY, the pressure drop, and the uncertainty analysis dependence upon this change is examined. There are definite changes in the results between the 5D distance and the 10D distance. As a base line, the flow coefficient, KY, showed 0.8% to 2% difference between the 5D and the 10D distance case. Depending upon the upstream flow conditions, the reproducibility of the slotted flow meter was affected. The pressure drop increased as the upstream Reynolds number increases. The result from the analysis of a water cut meter mounted downstream of a slotted flow meter showed that there are definitive relationships between the output of the water cut meter and the parameters of the flow.


Author(s):  
Z. Charles Ying ◽  
Stephen M. Hsu

Accurate friction measurement at nanoscale is critical in reliable micro- and nano-device design. Different values of coefficient of friction (COF) have been reported in the literature for the same material when different instruments and tip sizes were used [1–3]. We have conducted a series of experiments to delineate the effects of different tip sizes and shapes on friction as a function of load and found that friction force values under the elastic contact regime for various tips can be unified when plotted against the tip cross-sectional area in the direction of sliding. This observation implies a volumetric dependence of friction that has not been reported before in the elastic regime.


Otopro ◽  
2021 ◽  
pp. 15-20
Author(s):  
Diastian Vinaya Wijanarko

The numerical study of pressure drop on a tandem cylinder with the addition of a splitter plate and a vortex generator with the effect of a blockage ratio has been completed. The cross-sectional height and diameter of the cylinder in this study used H= 125 mm and D= 37.5 mm, respectively. The blockage ratio is 30%. The Reynolds number (Re) is 52100 ≤ Re ≤ 156000. The distance between cylinders is 5 to 8, where “s” is the distance from cylinder one to cylinder two. The dimensions of the splitter plate are L=D, L=1,5D, and L=2D where "L" is the length of the splitter plate, while the thickness in this study is 1, 75mm. The dimensions of the vortex generator in this study are used those of Hu, et al. [6]. The angle of the vortex generator is = 350 while the length of the vortex generator is H = 3 mm. All variations of this numerical study were carried out using the URANS (Unsteady Reynold Average Navier Stoke) method with a Reynolds number (Re) 52,100 Re 156,000. The smallest pressure drop value is obtained at the Reynolds number 52.100 for all variations, while the highest Reynolds number is obtained at Re 156.000. the addition of a splitter plate and a vortex generator, gives a higher pressure drop when compared to a circular cylinder.


Author(s):  
Rosa H. Cha´vez ◽  
Javier de J. Guadarrama ◽  
Osbaldo Pe´rez ◽  
Abel Herna´ndez-Guerrero

In order to determine the dimension of a separation column, hydrodynamic and mass transfer models are necessary to evaluate the pressure drop and the height of the global mass transfer unit, respectively. Those parameters are a function of the cross sectional area of the column. The present work evaluates the dependency of the pressure drop and height of the global transfer unit with respect to the cross sectional area of the column, using an absorption column with high efficiency structured packing, in order to recover SO2 in the form of NaHSO3, as an example. An optimization was done applying Two Film model which is based on the number of global mass transfer units of both gas and liquid, involving the separation efficiency in terms of the height of a global transfer unit. Structured packing, geometrically heaped in a separation column, has been achieving wider acceptance in the separation processes due to their geometric characteristics that allow them to have greater efficiency in the separation processes. Three different structured packing were evaluated in this work. The results show how ININ packing is one of the packings does the best work having the highest separation efficiency because it has the lowest height of the global mass transfer unit and Mellapak packing has the largest capacity because it manages the largest liquid and gas flows. An analysis is done with respect to the pressure drop through the system for all packings considered, and a discussion is presented for each hydrodynamic and mass transfer parameter studied.


1990 ◽  
Vol 68 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
R. Sartene ◽  
P. Martinot-Lagarde ◽  
M. Mathieu ◽  
A. Vincent ◽  
M. Goldman ◽  
...  

A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).


Sign in / Sign up

Export Citation Format

Share Document