Problems with plethysmographic estimation of lung volume in infants and young children

1982 ◽  
Vol 53 (3) ◽  
pp. 698-702 ◽  
Author(s):  
P. Helms

In 57 infants and very young children, less than 2 yr of age and with a variety of cardiopulmonary illnesses, problems were encountered in the estimation of lung volume with the plethysmographic technique. In 19 subjects calculated thoracic gas volume (TGV) was found to be consistently larger when airway occlusions were performed at low lung volumes than when performed at higher lung volumes. In 13 infants, changes in intraesophageal pressure (Pes) during airway occlusions were found to be larger than simultaneous changes in mouth pressure. In 25 subjects in whom none of the above changes were observed, total pulmonary resistance (TPR) and airway resistance (Raw) did not differ significantly [mean TPR, 50.1 +/- 27.5 cmH2O X l-1; mean Raw, 48.1 +/- 26.5 (P greater than 0.5)]. In the 13 subjects in whom the delta Pes-to-delta Pm occlusion ratio exceeded 1.05, closest agreement with specific resistance (sRaw) and TPR derived lung volume was found when TGV was calculated with delta Pes rather than mouth pressure change (delta Pm). A similar close agreement with the sRaw TPR derived volume was obtained when TGV was calculated during airway occlusions at the higher lung volume. Two separate lung models are proposed to explain these observations, one with a segmental airway closure and the other with more a generalized airway closure. If plethysmographic techniques are to be used in these young subjects for the estimation of lung volume and airway resistance, possible errors may be reduced by performing airway occlusions at lung volumes above functional residual capacity and noting the delta Pes-to-delta Pm ratio obtained during the occlusion.

2012 ◽  
Vol 112 (9) ◽  
pp. 1494-1503 ◽  
Author(s):  
Vanessa J. Kelly ◽  
Nathan J. Brown ◽  
Scott A. Sands ◽  
Brigitte M. Borg ◽  
Gregory G. King ◽  
...  

Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.


1988 ◽  
Vol 65 (6) ◽  
pp. 2679-2686 ◽  
Author(s):  
S. T. Kariya ◽  
S. A. Shore ◽  
W. A. Skornik ◽  
K. Anderson ◽  
R. H. Ingram ◽  
...  

The maximal effect induced by methacholine (MCh) aerosols on pulmonary resistance (RL), and the effects of altering lung volume and O3 exposure on these induced changes in RL, was studied in five anesthetized and paralyzed dogs. RL was measured at functional residual capacity (FRC), and lung volumes above and below FRC, after exposure to MCh aerosols generated from solutions of 0.1-300 mg MCh/ml. The relative site of response was examined by magnifying parenchymal [RL with large tidal volume (VT) at fast frequency (RLLS)] or airway effects [RL with small VT at fast frequency (RLSF)]. Measurements were performed on dogs before and after 2 h of exposure to 3 ppm O3. MCh concentration-response curves for both RLLS and RLSF were sigmoid shaped. Alterations in mean lung volume did not alter RLLS; however, RLSF was larger below FRC than at higher lung volumes. Although O3 exposure resulted in small leftward shifts of the concentration-response curve for RLLS, the airway dominated index of RL (RLSF) was not altered by O3 exposure, nor was the maximal response using either index of RL. These data suggest O3 exposure does not affect MCh responses in conducting airways; rather, it affects responses of peripheral contractile elements to MCh, without changing their maximal response.


2019 ◽  
Vol 126 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Paul J. C. Hughes ◽  
Laurie Smith ◽  
Ho-Fung Chan ◽  
Bilal A. Tahir ◽  
Graham Norquay ◽  
...  

In this study, the effect of lung volume on quantitative measures of lung ventilation was investigated using MRI with hyperpolarized 3He and 129Xe. Six volunteers were imaged with hyperpolarized 3He at five different lung volumes [residual volume (RV), RV + 1 liter (1L), functional residual capacity (FRC), FRC + 1L, and total lung capacity (TLC)], and three were also imaged with hyperpolarized 129Xe. Imaging at each of the lung volumes was repeated twice on the same day with corresponding 1H lung anatomical images. Percent lung ventilated volume (%VV) and variation of signal intensity [heterogeneity score (Hscore)] were evaluated. Increased ventilation heterogeneity, quantified by reduced %VV and increased Hscore, was observed at lower lung volumes with the least ventilation heterogeneity observed at TLC. For 3He MRI data, the coefficient of variation of %VV was <1.5% and <5.5% for Hscore at all lung volumes, while for 129Xe data the values were 4 and 10%, respectively. Generally, %VV generated from 129Xe images was lower than that seen from 3He images. The good repeatability of 3He %VV found here supports prior publications showing that percent lung-ventilated volume is a robust method for assessing global lung ventilation. The greater ventilation heterogeneity observed at lower lung volumes indicates that there may be partial airway closure in healthy lungs and that lung volume should be carefully considered for reliable longitudinal measurements of %VV and Hscore. The results suggest that imaging patients at different lung volumes may help to elucidate obstructive disease pathophysiology and progression. NEW & NOTEWORTHY We present repeatability data of quantitative metrics of lung function derived from hyperpolarized helium-3, xenon-129, and proton anatomical images acquired at five lung volumes in volunteers. Increased regional ventilation heterogeneity at lower lung inflation levels was observed in the lungs of healthy volunteers.


2008 ◽  
Vol 104 (2) ◽  
pp. 521-533 ◽  
Author(s):  
Stephen J. Lai-Fook ◽  
Pamela K. Houtz ◽  
Yih-Loong Lai

The evaluation of airway resistance (Raw) in conscious mice requires both end-expiratory (Ve) and tidal volumes (Vt) (Lai-Fook SJ and Lai YL. J Appl Physiol 98: 2204–2218, 2005). In anesthetized BALB/c mice we measured lung area (AL) from ventral-to-dorsal x-ray images taken at FRC (Ve) and after air inflation with 0.25 and 0.50 ml (ΔVL). Total lung volume (VL) described by equation: VL = ΔVL + VFRC = KAL1.5 assumed uniform (isotropic) inflation. Total VFRC averaged 0.55 ml, consisting of 0.10 ml tissue, 0.21 ml blood and 0.24 ml air. K averaged 1.84. In conscious mice in a sealed box, we measured the peak-to-peak box pressure excursions (ΔPb) and x-rays during several cycles. K was used to convert measured AL1.5 to VL values. We calculated Ve and Vt from the plot of VL vs. cos(α − φ). Phase angle α was the minimum point of the Pb cycle to the x-ray exposure. Phase difference between the Pb and VL cycles (φ) was measured from ΔPb values using both room- and body-temperature humidified box air. A similar analysis was used after aerosol exposures to bronchoconstrictor methacholine (Mch), except that φ depended also on increased Raw. In conscious mice, Ve (0.24 ml) doubled after Mch (50–125 mg/ml) aerosol exposure with constant Vt, frequency (f), ΔPb, and Raw. In anesthetized mice, in addition to an increased Ve, repeated 100 mg/ml Mch exposures increased both ΔPb and Raw and decreased f to apnea in 10 min. Thus conscious mice adapted to Mch by limiting Raw, while anesthesia resulted in airway closure followed by diaphragm fatigue and failure.


1969 ◽  
Vol 47 (5) ◽  
pp. 453-457 ◽  
Author(s):  
W. T. Josenhans ◽  
G. N. Melville ◽  
W. T. Ulmer

The effect on airway conductance (Gaw) and functional residual capacity (FRC) of stimulation of cold receptors in facial skin was studied in 12 healthy young subjects, with a body plethysmograph. Mean Gaw decreased significantly, from 0.44 to 0.38 liter s−1 cm−1 H2O, in 10 subjects. FRC was only slightly affected, probably because the experiment was too brief to allow air-trapping. It is concluded that the Gaw decrease during exposure to cold results from bronchoconstriction due to (a) stimulation of trigeminal nerve cold receptors and to (b) pharyngeal and glottal airway resistance increase resulting from frequent involuntary 'dry' swallowing.


1999 ◽  
Vol 87 (4) ◽  
pp. 1491-1495 ◽  
Author(s):  
Joseph R. Rodarte ◽  
Gassan Noredin ◽  
Charles Miller ◽  
Vito Brusasco ◽  
Riccardo Pellegrino ◽  
...  

During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964–975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by ∼10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.


1998 ◽  
Vol 84 (5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Maurice Beaumont ◽  
Redouane Fodil ◽  
Daniel Isabey ◽  
Frédéric Lofaso ◽  
Dominique Touchard ◽  
...  

We measured upper airway caliber and lung volumes in six normal subjects in the sitting and supine positions during 20-s periods in normogravity, hypergravity [1.8 + head-to-foot acceleration (Gz)], and microgravity (∼0 Gz) induced by parabolic flights. Airway caliber and lung volumes were inferred by the acoustic reflection method and inductance plethysmography, respectively. In subjects in the sitting position, an increase in gravity from 0 to 1.8 +Gz was associated with increases in the calibers of the retrobasitongue and palatopharyngeal regions (+20 and +30%, respectively) and with a concomitant 0.5-liter increase in end-expiratory lung volume (functional residual capacity, FRC). In subjects in the supine position, no changes in the areas of these regions were observed, despite significant decreases in FRC from microgravity to normogravity (−0.6 liter) and from microgravity to hypergravity (−0.5 liter). Laryngeal narrowing also occurred in both positions (about −15%) when gravity increased from 0 to 1.8 +Gz. We concluded that variation in lung volume is insufficient to explain all upper airway caliber variation but that direct gravity effects on tissues surrounding the upper airway should be taken into account.


1994 ◽  
Vol 77 (3) ◽  
pp. 1562-1564 ◽  
Author(s):  
Y. Sivan ◽  
J. Hammer ◽  
C. J. Newth

Studies on human infants suggested that thoracic gas volume (TGV) measured at end exhalation may not depict the true TGV and may differ from TGV measured from a series of higher lung volumes and corrected for the volume added. This was explained by gas trapping. If true, we should expect the discrepancy to be more pronounced when functional residual capacity (FRC) and higher lung volumes are measured by gas dilution techniques. We studied lung volumes above FRC by the nitrogen washout technique in 12 spontaneously breathing rhesus monkeys (5.0–11.3 kg wt; 42 compared measurements). Lung volumes directly measured were compared with preset lung volumes achieved by artificial inflation of the lungs above FRC with known volumes of air (100–260 ml). Measured lung volume strongly correlated with and was not significantly different from present lung volume (P = 0.05; r = 0.996). The difference between measured and preset lung volume was 0–5% in 41 of 42 cases [1 +/- 0.4% (SE)]. The direction of the difference was unpredictable; in 22 of 42 cases the measured volume was larger than the preset volume, but in 17 of 42 cases it was smaller. The difference was not affected by the volume of gas artificially inflated into the lungs. We conclude that, overall, lung volumes above FRC can be reliably measured by the nitrogen washout technique and that FRC measurements by this method reasonably reflect true FRC.


1982 ◽  
Vol 52 (4) ◽  
pp. 995-999 ◽  
Author(s):  
C. S. Beardsmore ◽  
J. Stocks ◽  
M. Silverman

Thoracic gas volume (TGV) was measured with a whole-body plethysmograph in 20 infants at functional residual capacity (FRC) and at a series of higher lung volumes achieved by artificial inflation of the lungs with known volumes of air after airway occlusion. There was a discrepancy between the corrected values of TGV measured at high and low lung volumes in nine infants; in six cases TGV measured at high lung volumes exceeded that measured at FRC, and in three cases it was reduced when compared with the measurement made at FRC. These changes were not related to age, size, or clinical status and could be explained by airway closure at FRC, combined with an uneven distribution of pleural pressure.


1995 ◽  
Vol 78 (5) ◽  
pp. 1993-1997 ◽  
Author(s):  
J. Hammer ◽  
C. J. Newth

The rapid thoracoabdominal compression (RTC) technique is commonly used in pulmonary function laboratories to assess flow-volume relationships in infants unable to produce a voluntary forced expiration maneuver. This technique produces forced expiratory flows over only a small lung volume segment (i.e., tidal volume). It has been argued that the RTC technique should be modified to measure flow-volume relationships over a larger portion of the vital capacity range to imitate the voluntary maximal forced expiratory maneuver obtained in older children and adults. We examined the effect of volume history on forced expiratory flows by generating forced expiratory flow-volume curves by RTC from well-defined inspiratory volumes delineated by inspiratory pressures of 10, 20, 30, and 40 cmH2O down to residual volume (i.e., the reference volume) in seven intubated and anesthetized infants with normal lungs [age 8.0 +/- 2.0 (SE) mo, weight 6.7 +/- 0.6 kg]. We compared maximal expiratory flows at isovolume points (25 and 10% of forced vital capacity) and found no significant differences in maximal isovolume flow rates measured from the different lung volumes. We conclude that there is no obvious need to initiate RTC from higher lung volumes if the technique is used for flow comparisons. However, compared with measurements of maximal flows at functional residual capacity by RTC from end-tidal inspiration, the initiation of RTC from a defined and reproducible inspiratory level appears to decrease the intrasubject variability of the maximal expiratory flows at low lung volumes.


Sign in / Sign up

Export Citation Format

Share Document