scholarly journals Assessment of the influence of lung inflation state on the quantitative parameters derived from hyperpolarized gas lung ventilation MRI in healthy volunteers

2019 ◽  
Vol 126 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Paul J. C. Hughes ◽  
Laurie Smith ◽  
Ho-Fung Chan ◽  
Bilal A. Tahir ◽  
Graham Norquay ◽  
...  

In this study, the effect of lung volume on quantitative measures of lung ventilation was investigated using MRI with hyperpolarized 3He and 129Xe. Six volunteers were imaged with hyperpolarized 3He at five different lung volumes [residual volume (RV), RV + 1 liter (1L), functional residual capacity (FRC), FRC + 1L, and total lung capacity (TLC)], and three were also imaged with hyperpolarized 129Xe. Imaging at each of the lung volumes was repeated twice on the same day with corresponding 1H lung anatomical images. Percent lung ventilated volume (%VV) and variation of signal intensity [heterogeneity score (Hscore)] were evaluated. Increased ventilation heterogeneity, quantified by reduced %VV and increased Hscore, was observed at lower lung volumes with the least ventilation heterogeneity observed at TLC. For 3He MRI data, the coefficient of variation of %VV was <1.5% and <5.5% for Hscore at all lung volumes, while for 129Xe data the values were 4 and 10%, respectively. Generally, %VV generated from 129Xe images was lower than that seen from 3He images. The good repeatability of 3He %VV found here supports prior publications showing that percent lung-ventilated volume is a robust method for assessing global lung ventilation. The greater ventilation heterogeneity observed at lower lung volumes indicates that there may be partial airway closure in healthy lungs and that lung volume should be carefully considered for reliable longitudinal measurements of %VV and Hscore. The results suggest that imaging patients at different lung volumes may help to elucidate obstructive disease pathophysiology and progression. NEW & NOTEWORTHY We present repeatability data of quantitative metrics of lung function derived from hyperpolarized helium-3, xenon-129, and proton anatomical images acquired at five lung volumes in volunteers. Increased regional ventilation heterogeneity at lower lung inflation levels was observed in the lungs of healthy volunteers.

1984 ◽  
Vol 57 (4) ◽  
pp. 1211-1221 ◽  
Author(s):  
T. L. Clanton ◽  
W. T. Lipscomb

The effects of CO2 concentration on the timing of inspiratory duration (TI) and expiratory duration (TE) and the responses to lung inflation were studied in decerebrate paralyzed cats. With lung volume held at functional residual capacity during the breath cycle, hypercapnia (fractional concentration of inspired CO2 = 0.04) caused variable changes in TI and significant increases in TE. To obtain the Breuer-Hering threshold relationship [tidal volume (VT) vs. TI] and the timing relationship between TE and the preceding TI (TE vs. TI), ramp inflations of various sizes were used to terminate inspiration at different times in the breath cycle. Hypercapnia caused the VT vs. TI curves to shift in an upward direction so that at higher lung volumes TI was lengthened. Also, the slope of the TE vs. TI relationship was increased. The results suggest that hypercapnia diminished the sensitivity of the Breuer-Hering reflex to the lung volume, thus allowing volume to increase with little effect on TI. In addition, TE appears to become more sensitive to changes in the preceding TI. A model is presented which provides a possible neural mechanism for these responses.


1988 ◽  
Vol 65 (6) ◽  
pp. 2679-2686 ◽  
Author(s):  
S. T. Kariya ◽  
S. A. Shore ◽  
W. A. Skornik ◽  
K. Anderson ◽  
R. H. Ingram ◽  
...  

The maximal effect induced by methacholine (MCh) aerosols on pulmonary resistance (RL), and the effects of altering lung volume and O3 exposure on these induced changes in RL, was studied in five anesthetized and paralyzed dogs. RL was measured at functional residual capacity (FRC), and lung volumes above and below FRC, after exposure to MCh aerosols generated from solutions of 0.1-300 mg MCh/ml. The relative site of response was examined by magnifying parenchymal [RL with large tidal volume (VT) at fast frequency (RLLS)] or airway effects [RL with small VT at fast frequency (RLSF)]. Measurements were performed on dogs before and after 2 h of exposure to 3 ppm O3. MCh concentration-response curves for both RLLS and RLSF were sigmoid shaped. Alterations in mean lung volume did not alter RLLS; however, RLSF was larger below FRC than at higher lung volumes. Although O3 exposure resulted in small leftward shifts of the concentration-response curve for RLLS, the airway dominated index of RL (RLSF) was not altered by O3 exposure, nor was the maximal response using either index of RL. These data suggest O3 exposure does not affect MCh responses in conducting airways; rather, it affects responses of peripheral contractile elements to MCh, without changing their maximal response.


1987 ◽  
Vol 63 (4) ◽  
pp. 1586-1590 ◽  
Author(s):  
J. A. Cooper ◽  
H. van der Zee ◽  
B. R. Line ◽  
A. B. Malik

We investigated the dose-response effect of positive end-expiratory pressure (PEEP) and increased lung volume on the pulmonary clearance rate of aerosolized technetium-99m-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA). Clearance of lung radioactivity was expressed as percent decrease per minute. Base-line clearance was measured while anesthetized sheep (n = 20) were ventilated with 0 cmH2O end-expiratory pressure. Clearance was remeasured during ventilation at 2.5, 5, 10, 15, or 20 cmH2O PEEP. Further studies showed stepwise increases in functional residual capacity (FRC) (P less than 0.05) measured at 0, 2.5, 5, 10, 15, and 20 cmH2O PEEP. At 2.5 cmH2O PEEP, the clearance rate was not different from that at base line (P less than 0.05), although FRC was increased from base line. Clearance rate increased progressively with increasing PEEP at 5, 10, and 15 cmH2O (P less than 0.05). Between 15 and 20 cmH2O PEEP, clearance rate was again unchanged, despite an increase in FRC. The pulmonary clearance of aerosolized 99mTc-DTPA shows a sigmoidal response to increasing FRC and PEEP, having both threshold and maximal effects. This relationship is most consistent with the hypothesis that alveolar epithelial permeability is increased by lung inflation.


1992 ◽  
Vol 73 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Z. Fu ◽  
M. L. Costello ◽  
K. Tsukimoto ◽  
R. Prediletto ◽  
A. R. Elliott ◽  
...  

We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.


1998 ◽  
Vol 84 (5) ◽  
pp. 1639-1645 ◽  
Author(s):  
Maurice Beaumont ◽  
Redouane Fodil ◽  
Daniel Isabey ◽  
Frédéric Lofaso ◽  
Dominique Touchard ◽  
...  

We measured upper airway caliber and lung volumes in six normal subjects in the sitting and supine positions during 20-s periods in normogravity, hypergravity [1.8 + head-to-foot acceleration (Gz)], and microgravity (∼0 Gz) induced by parabolic flights. Airway caliber and lung volumes were inferred by the acoustic reflection method and inductance plethysmography, respectively. In subjects in the sitting position, an increase in gravity from 0 to 1.8 +Gz was associated with increases in the calibers of the retrobasitongue and palatopharyngeal regions (+20 and +30%, respectively) and with a concomitant 0.5-liter increase in end-expiratory lung volume (functional residual capacity, FRC). In subjects in the supine position, no changes in the areas of these regions were observed, despite significant decreases in FRC from microgravity to normogravity (−0.6 liter) and from microgravity to hypergravity (−0.5 liter). Laryngeal narrowing also occurred in both positions (about −15%) when gravity increased from 0 to 1.8 +Gz. We concluded that variation in lung volume is insufficient to explain all upper airway caliber variation but that direct gravity effects on tissues surrounding the upper airway should be taken into account.


1994 ◽  
Vol 77 (3) ◽  
pp. 1562-1564 ◽  
Author(s):  
Y. Sivan ◽  
J. Hammer ◽  
C. J. Newth

Studies on human infants suggested that thoracic gas volume (TGV) measured at end exhalation may not depict the true TGV and may differ from TGV measured from a series of higher lung volumes and corrected for the volume added. This was explained by gas trapping. If true, we should expect the discrepancy to be more pronounced when functional residual capacity (FRC) and higher lung volumes are measured by gas dilution techniques. We studied lung volumes above FRC by the nitrogen washout technique in 12 spontaneously breathing rhesus monkeys (5.0–11.3 kg wt; 42 compared measurements). Lung volumes directly measured were compared with preset lung volumes achieved by artificial inflation of the lungs above FRC with known volumes of air (100–260 ml). Measured lung volume strongly correlated with and was not significantly different from present lung volume (P = 0.05; r = 0.996). The difference between measured and preset lung volume was 0–5% in 41 of 42 cases [1 +/- 0.4% (SE)]. The direction of the difference was unpredictable; in 22 of 42 cases the measured volume was larger than the preset volume, but in 17 of 42 cases it was smaller. The difference was not affected by the volume of gas artificially inflated into the lungs. We conclude that, overall, lung volumes above FRC can be reliably measured by the nitrogen washout technique and that FRC measurements by this method reasonably reflect true FRC.


1995 ◽  
Vol 78 (5) ◽  
pp. 1993-1997 ◽  
Author(s):  
J. Hammer ◽  
C. J. Newth

The rapid thoracoabdominal compression (RTC) technique is commonly used in pulmonary function laboratories to assess flow-volume relationships in infants unable to produce a voluntary forced expiration maneuver. This technique produces forced expiratory flows over only a small lung volume segment (i.e., tidal volume). It has been argued that the RTC technique should be modified to measure flow-volume relationships over a larger portion of the vital capacity range to imitate the voluntary maximal forced expiratory maneuver obtained in older children and adults. We examined the effect of volume history on forced expiratory flows by generating forced expiratory flow-volume curves by RTC from well-defined inspiratory volumes delineated by inspiratory pressures of 10, 20, 30, and 40 cmH2O down to residual volume (i.e., the reference volume) in seven intubated and anesthetized infants with normal lungs [age 8.0 +/- 2.0 (SE) mo, weight 6.7 +/- 0.6 kg]. We compared maximal expiratory flows at isovolume points (25 and 10% of forced vital capacity) and found no significant differences in maximal isovolume flow rates measured from the different lung volumes. We conclude that there is no obvious need to initiate RTC from higher lung volumes if the technique is used for flow comparisons. However, compared with measurements of maximal flows at functional residual capacity by RTC from end-tidal inspiration, the initiation of RTC from a defined and reproducible inspiratory level appears to decrease the intrasubject variability of the maximal expiratory flows at low lung volumes.


1978 ◽  
Vol 54 (3) ◽  
pp. 313-321
Author(s):  
K. B. Saunders ◽  
M. Rudolf

1. We measured changes in peak expiratory flow rate (PEFR), forced expiratory volume in 1 s (FEV1·0), airways resistance (Raw), specific conductance (sGaw), residual volume (RV), functional residual capacity (FRC) and total lung capacity (TLC) in 44 patients with asthma. 2. When asthma was induced by exercise in five patients there were large changes in volumes, but these did not obscure changes in PEFR, which adequately defined the time course of the response. 3. In 70 comparisons before and after inhalation of bronchodilator drug in 33 asthmatic subjects, the responses were classified by the size of the change in lung volumes, which showed a concordant improvement, or no change, in 61 comparisons. Despite these lung volume changes, measurement of both PEFR and FEV1·0, would have detected a bronchodilator response in all but two cases. 4. In 81 comparisons in 23 subjects over time intervals varying from 1 day to 11 months, lung volumes changed in concordance with PEFR and FEV1·0 in 59. In eight of these comparisons, measurement of lung volumes would have altered our interpretation of the changes in PEFR and FEV1·0. 5. In the same 81 comparisons changes in airways resistance were concordant with changes in PEFR and FEV1·0 on 44 occasions, with minor discordant changes in 19. We could not explain the remaining 18 cases showing major discordance between these two types of measurement of airway calibre. 6. We conclude that both FEV1·0, and PEFR should be used for detection of a bronchodilator response, and that measurement of lung volumes will rarely contribute to the interpretation. Over longer periods, lung volumes should be measured if possible. We found no practical use for routine measurement of airways resistance in patients with asthma.


1998 ◽  
Vol 85 (6) ◽  
pp. 2284-2290 ◽  
Author(s):  
Theodore A. Wilson ◽  
Aladin M. Boriek ◽  
Joseph R. Rodarte

The mechanical advantage (μ) of a respiratory muscle is defined as the respiratory pressure generated per unit muscle mass and per unit active stress. The value of μ can be obtained by measuring the change in the length of the muscle during inflation of the passive lung and chest wall. We report values of μ for the muscles of the canine diaphragm that were obtained by measuring the lengths of the muscles during a passive quasistatic vital capacity maneuver. Radiopaque markers were attached along six muscle bundles of the costal and two muscle bundles of the crural left hemidiaphragms of four bred-for-research beagle dogs. The three-dimensional locations of the markers were obtained from biplane video-fluoroscopic images taken at four volumes during a passive relaxation maneuver from total lung capacity to functional residual capacity in the prone and supine postures. Muscle lengths were determined as a function of lung volume, and from these data, values of μ were obtained. Values of μ are fairly uniform around the ventral midcostal and crural diaphragm but significantly lower at the dorsal end of the costal diaphragm. The average values of μ are −0.35 ± 0.18 and −0.27 ± 0.16 cmH2O ⋅ g−1 ⋅ kg−1 ⋅ cm−2in the prone and supine dog, respectively. These values are 1.5–2 times larger than the largest values of μ of the intercostal muscles in the supine dog. From these data we estimate that during spontaneous breathing the diaphragm contributes ∼40% of inspiratory pressure in the prone posture and ∼30% in the supine posture. Passive shortening, and hence μ, in the upper one-third of inspiratory capacity is less than one-half of that at lower lung volume. The lower μ is attributed primarily to a lower abdominal compliance at high lung volume.


1986 ◽  
Vol 61 (1) ◽  
pp. 300-303 ◽  
Author(s):  
D. M. Berzon ◽  
H. Menkes ◽  
A. M. Dannenberg ◽  
A. Gertner ◽  
P. Terry ◽  
...  

Interstitial fibrosis may increase resistance to collateral flow (Rcoll) because of decreased lung volume and destruction of collateral channels or it may decrease Rcoll because of emphysematous changes around fibrotic regions. In addition, if interstitial fibrosis involves a small region of lung periphery, interdependence from surrounding unaffected lung should produce relatively large changes in volume of the fibrotic region during lung inflation. We studied the effects of interstitial fibrosis on collateral airflow by measuring Rcoll at functional residual capacity (FRC) in nine mongrel dogs before and 28 days after the local instillation of bleomycin into selected lung segments. In six of these dogs Rcoll was also measured at a higher lung volume (transpulmonary pressure = 12 cmH2O above FRC pressure). Rcoll increased in fibrotic lung segments following local treatment with bleomycin. With lung inflation (high transpulmonary pressure) Rcoll fell a similar proportion in fibrotic and nonfibrotic lung regions. These observations suggest that collateral resistance increases in fibrotic segments because lung volume decreases or because collateral pathways are involved directly in the fibrotic process. Compensatory increases in collateral communications do not occur. In addition, pulmonary interdependence does not cause disproportionate increases in volume and decreases in Rcoll of the fibrotic region during lung inflation.


Sign in / Sign up

Export Citation Format

Share Document