Thermal responses during arm and leg and combined arm-leg exercise in water

1984 ◽  
Vol 56 (5) ◽  
pp. 1355-1360 ◽  
Author(s):  
M. M. Toner ◽  
M. N. Sawka ◽  
K. B. Pandolf

Thermal and metabolic responses were examined during exposures in stirred water at approximately 20, 26, and 33 degrees C while subjects were performing 45 min of either arm (A), leg (L), or combined arm-leg (AL) exercise. Eight males immersed to the neck completed a low exercise intensity for A exercise and both a low and high exercise intensity for L and AL exercise. During low-intensity exercise, final metabolic rate (M) for A, L, and AL exercise was not different (P greater than 0.05) between exercise type for each water temperature (Tw). In contrast final rectal temperatures (Tre) for A and AL exercise were significantly lower than L values for each Tw during low-intensity exercise. These findings were supported by both mean weighted skin temperature (Tsk) and mean weighted heat flow (Hc) values, which were greater during A than L for each Tw. During high-intensity exercise, final Tre values were lower (P less than 0.05) during AL compared with L exercise across all Tw. Final Tsk and Hc values were not different between each type of exercise, although M was significantly lower during L exercise in 20 degrees C water. These data suggest a greater conductive and convective heat loss during exercise utilizing the arms when compared with leg-only exercise.

1991 ◽  
Vol 260 (2) ◽  
pp. H436-H444 ◽  
Author(s):  
L. G. Koch ◽  
D. M. Strick ◽  
S. L. Britton ◽  
P. J. Metting

To evaluate the competition between local autoregulation and reflex neurohumoral control of hindlimb blood flow (HLBF), the hindlimb vascular pressure-flow relationship was determined in nine dogs in response to a 10% decrease in mean arterial pressure (AP) imposed during both low (3.0 km/h, 0% grade) and high (5.5 km/h, 14% grade) intensities of treadmill exercise. HLBF was measured with a Doppler flow probe on the left external iliac artery, and AP was controlled with a gravity reservoir connected to the left carotid artery. A 10 +/- 2% reduction in AP for 25 min caused HLBF to decrease 25 +/- 2% during low-exercise intensity but only 10 +/- 2% during high-exercise intensity. The corresponding closed-loop gains (Gc) of HLBF regulation [Gc = 1 - (% delta hindlimb blood flow/% delta hindlimb perfusion pressure) were -1.6 +/- 0.4 and -0.06 +/- 0.2 during low- and high-exercise intensity, respectively. Autonomic ganglionic blockade (hexamethonium) increased the Gc during low-intensity exercise to 0.07 +/- 0.2. Antagonism of adenosine receptors (aminophylline) decreased the Gc of HLBF regulation during high-intensity exercise to -0.57 +/- 0.3. These data demonstrate that in response to an imposed decrease in AP, autonomic vasoconstriction overrides autoregulatory vasodilatory mechanisms during low-intensity exercise. HLBF regulation increases at a higher exercise intensity, in part due to adenosine, but autoregulation does not predominate over arterial pressure regulating mechanisms.


2017 ◽  
Vol 86 (4) ◽  
pp. 224-230 ◽  
Author(s):  
R. Vermeulen ◽  
C. De Meeûs ◽  
L. Plancke ◽  
B. Boshuizen ◽  
M. De Bruijn ◽  
...  

It is well known that exercise induces chemical, metabolic and structural changes in muscles. However, the effect of the type of exercise on these changes has not been thoroughly studied in horses yet, because of a lack of standardized study methods. In this review, the effect of three different types of exercise on muscle adaptation and metabolic responses is investigated. The requirements for power exercise are not the same as for low intensity exercise. Each type of training induces its own shift in muscle fiber typing, as well as in enzyme concentrations and (an) aerobic capacity. These physiological adaptations in response to training facilitate more efficient exercise and therefore increase performance. Hence, it is important to know the adaptations that muscles undergo in response to each type of exercise to optimize training management of sport horses in function of the needs of the discipline in which they compete.


2010 ◽  
Vol 34 (S34) ◽  
pp. 95-99 ◽  
Author(s):  
A. PRINCE ◽  
R. GEOR ◽  
P. HARRIS ◽  
K. HOEKSTRA ◽  
S. GARDNER ◽  
...  

2021 ◽  
Vol 27 (2) ◽  
pp. 170-173
Author(s):  
Jang-kyu Lee

ABSTRACT Objective: Visfatin may regulate a variety of physiological functions and it has great potential to significantly enhance our knowledge of the treatment of metabolic syndrome. Metabolic syndrome (MS) refers to metabolic abnormalities, such as abdominal obesity, dyslipidemia, high low-density cholesterol, high blood pressure and diabetes, and physical activity is an important factor for the management of MS. Therefore, the purpose of this study is to investigate the effects of visfatin on MS and MS risk factors through differences in aerobic exercise intensity and exercise type based on the premise of the same amount of exercise (energy expenditure of 400 kcal per day). Method: Thirty two obese, middle-aged women were randomly assigned to exercise intensity groups VO2max 50% (MAE, n=8) and VO2max 80% (VAE, n=8) and to type of exercise groups VO2max 50% + TRX (MARE, n=8) and VO2max 80% + TRX (VARE, n=8). The exercise program was performed 5 times a week. The data was analyzed using two-way repeated measures ANOVA and post-hoc tests within groups with LSD. Results: Body weight (p<.01 and p<.001) and % body fat (p<.05 and p<.01) significantly decreased in all groups and visfatin only increased significantly after exercise in the VARE group (p<.05). TG, glucose, and waist circumstance (p<.05, p<.01, and p<.001) significantly decreased in all groups and HDL-C (p<.05) only increased significantly after exercise only in the MARE group. Conclusion: These results suggest that, in spite of differences in exercise intensity and exercise type, exercise is effective in improving obesity and MS risk factors, but further research is needed on the exact mechanisms of visfatin. Level of evidence I; Therapeutic Studies Investigating the Results of Treatment .


1992 ◽  
Vol 2 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Kent W. Goben ◽  
Gary A. Sforzo ◽  
Patricia A. Frye

This study investigated the effect of varying exercise intensity on the thermic effect of food (TEF). Sixteen lean male subjects were matched forand randomly assigned to either a high or low intensity group for 30 min of treadmill exercise. Caloric expenditure was measured using indirect calorimetry at rest and at 30-min intervals OYer 3 hrs following each of three conditions: a 750-kcal liquid meal, high or low intensity exercise, and a 750-kcal liquid meal followed by high or low intensity exercise. Low intensity exercise enhanced the TEF during recovery at 60 and 90 min while high intensity enhanced it only at 180 min but depressed it at 30 min. Total metabolic expense for a 3-hr postmeal period was not differently affected by the two exercise intensities. Exercise following a meal had a synergistic effect on metabolism; however, this effect was delayed until 180 min postmeal when exercise intensity was high. The circulatory demands of high intensity exercise may have initially blunted the TEF, but ultimately the TEF measured over the 3-hr period was at least equal to that experienced following low intensity exercise.


Sign in / Sign up

Export Citation Format

Share Document