Steady-state response of normal subjects to inspiratory resistive load

1986 ◽  
Vol 60 (5) ◽  
pp. 1471-1481 ◽  
Author(s):  
V. Im Hof ◽  
P. West ◽  
M. Younes

Tidal volume (VT) is usually preserved when conscious humans are made to breathe against an inspiratory resistance. To identify the neural changes responsible for VT compensation we calculated the respiratory driving pressure waveform during steady-state unloaded and loaded breathing (delta R = 8.5 cmH2O X 1(-1) X s) in eight conscious normal subjects. Driving pressure (DP) was calculated according to the method of Younes et al. (J. Appl. Physiol. 51: 963–989, 1981), which provides the equivalent of occlusion pressure at functional residual capacity throughout the breath. VT during resistance breathing was 108% of unloaded VT, as opposed to a predicted value of 82% of control in the absence of neural compensation. Compensation was accomplished through three changes in the DP waveform: 1) peak amplitude increased (+/- 23%), 2) the duration of the rising phase increased (+42%); and 3) the rising phase became more concave to the time axis. There were no changes in the relative decay rate of inspiratory pressure during expiration, in the shape of the declining phase of DP, or in end-expiratory lung volume.

1986 ◽  
Vol 60 (5) ◽  
pp. 1482-1492 ◽  
Author(s):  
V. Im Hof ◽  
H. Dubo ◽  
V. Daniels ◽  
M. Younes

Normal subjects preserve tidal volume (VT) in the face of added inspiratory resistance by increasing maximal amplitude and duration of the rising phase of respiratory driving pressure (DP) and by changing the shape of this phase to one that is more concave to the time axis. To explore the possible role of chest wall afferents in mediating these responses, we determined averaged DP in eight quadriplegic subjects during steady-state unloaded breathing and while breathing through an inspiratory resistance (8.5 cmH2O X 1(-1) X s). As with normal subjects, quadriplegics preserved VT (loaded VT = 106% control) by utilizing all three mechanisms. However, prolongation of the inspiratory duration derived from the DP waveform (+22% vs. +42%) and shape response were significantly less in the quadriplegic subjects. Shape response was completely absent in subjects with C4 lesions. The results provide strong evidence that respiratory muscle spindles are responsible for shape response and that changes in afferent feedback from the chest wall play an important role in mediating inspiratory prolongation.


Author(s):  
Mohammed F. Daqaq

Driven by the study of Leland and Wright [1], this manuscript delves into the qualitative understanding of energy harvesting using axially-loaded beams. Using a simple nonlinear electromechanical model and the method of multiple scales, we study the general nonlinear physics of energy harvesting from a piezoelectric beam subjected to static axial loading and traversal dynamic excitation. We obtain analytical expressions for the steady-state response amplitude, the voltage drop across a resistive load, and the output power. We utilize these expression to study the effect of the axial loading on the overall nonlinear behavior of the harvester. It is demonstrated that, in addition to the ability of tuning the harvester to the excitation frequency via axial load variations, the axial load aids in i) increasing the electric damping in the system thereby enhancing the energy transfer from the beam to the electric load, ii) amplifying the effect of the external excitation on the structure, and hence, increases the steady-state response amplitude and output voltage, and iii) increasing the bandwidth of the harvester by enhancing the effective nonlinearity of the system.


1991 ◽  
Vol 71 (1) ◽  
pp. 175-181 ◽  
Author(s):  
H. L. Manning ◽  
R. Basner ◽  
J. Ringler ◽  
C. Rand ◽  
V. Fencl ◽  
...  

This study evaluated the effect of chest wall vibration (115 Hz) on breathlessness. Breathlessness was induced in normal subjects by a combination of hypercapnia and an inspiratory resistive load; both minute ventilation and end-tidal CO2 were kept constant. Cross-modality matching was used to rate breathlessness. Ratings during intercostal vibration were expressed as a percentage of ratings during the control condition (either deltoid vibration or no vibration). To evaluate their potential contribution to any changes in breathlessness, we assessed several aspects of ventilation, including chest wall configuration, functional residual capacity (FRC), and the ventilatory response to steady-state hypercapnia. Intercostal vibration reduced breathlessness ratings by 6.5 +/- 5.7% compared with deltoid vibration (P less than 0.05) and by 7.0 +/- 8.3% compared with no vibration (P less than 0.05). The reduction in breathlessness was accompanied by either no change or negligible change in minute ventilation, tidal volume, frequency, duty cycle, compartmental ventilation, FRC, and the steady-state hypercapnic response. We conclude that chest wall vibration reduces breathlessness and speculate that it may do so through stimulation of receptors in the chest wall.


1989 ◽  
Vol 66 (3) ◽  
pp. 1113-1119 ◽  
Author(s):  
C. G. Gallagher ◽  
R. Sanii ◽  
M. Younes

The purpose of this study was to examine the role of the normal inspiratory resistive load in the regulation of respiratory motor output in resting conscious humans. We used a recently described device (J. Appl. Physiol. 62: 2491–2499, 1987) to make mouth pressure during inspiration positive and proportional to inspiratory flow, thus causing inspiratory resistive unloading (IRUL); the magnitude of IRUL (delta R = -3.0 cmH2O.1(-1).s) was set so as to unload most (approximately 86% of the normal inspiratory resistance. Six conscious normal humans were studied. Driving pressure (DP) was calculated according to the method of Younes et al. (J. Appl. Physiol. 51: 963–1001, 1981), which provides the equivalent of occlusion pressure at functional residual capacity throughout the breath. IRUL resulted in small but significant changes in minute ventilation (0.6 1/min) and in end-tidal CO2 concentration (-0.11%) with no significant change in tidal volume or respiratory frequency. There was a significant shortening of the duration (neural inspiratory time) of the rising phase of the DP waveform and the shape of the rising phase became more convex to the time axis. There was no change in the average rate of rise of DP or in the duration or shape of the declining phase. We conclude that 1) the normal inspiratory resistance is an important determinant of the duration and shape of the rising phase of DP and 2) the neural responses elicited by the normal inspiratory resistance are similar to those observed with added inspiratory resistive loads.


2002 ◽  
Vol 13 (05) ◽  
pp. 260-269 ◽  
Author(s):  
Barbara Cone-Wesson ◽  
John Parker ◽  
Nina Swiderski ◽  
Field Rickards

Two studies were aimed at developing the auditory steady-state response (ASSR) for universal newborn hearing screening. First, neonates who had passed auditory brainstem response, transient evoked otoacoustic emission, and distortion-product otoacoustic emission tests were also tested with ASSRs using modulated tones that varied in frequency and level. Pass rates were highest (> 90%) for amplitude-modulated tones presented at levels ≥ 69 dB SPL. The effect of modulation frequency on ASSR for 500- and 2000-Hz tones was evaluated in full-term and premature infants in the second study. Full-term infants had higher pass rates for 2000-Hz tones amplitude modulated at 74 to 106 Hz compared with pass rates for a 500-Hz tone modulated at 58 to 90 Hz. Premature infants had lower pass rates than full-term infants for both carrier frequencies. Systematic investigation of ASSR threshold and the effect of modulation frequency in neonates is needed to adapt the technique for screening.


Sign in / Sign up

Export Citation Format

Share Document