Effects of swim training on lung volumes and inspiratory muscle conditioning

1987 ◽  
Vol 62 (1) ◽  
pp. 39-46 ◽  
Author(s):  
T. L. Clanton ◽  
G. F. Dixon ◽  
J. Drake ◽  
J. E. Gadek

Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62–66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.

PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1960 ◽  
Vol 15 (1) ◽  
pp. 40-42 ◽  
Author(s):  
Stanley S. Heller ◽  
William R. Hicks ◽  
Walter S. Root

Lung volume determinations (tidal volume, inspiratory capacity, inspiratory reserve volume, expiratory reserve volume, vital capacity, maximum breathing capacity, functional residual capacity, residual volume, and total lung capacity) were carried out on 16 professional singers and 21 subjects who had had no professional vocal training. No differences were found between the two groups of subjects, whether recumbent or standing, which could not be explained upon the basis of age, size, or errors involved in making the measurements. Submitted on March 24, 1959


1994 ◽  
Vol 77 (2) ◽  
pp. 789-794 ◽  
Author(s):  
G. E. Tzelepis ◽  
D. L. Vega ◽  
M. E. Cohen ◽  
F. D. McCool

We examined the extent to which training-related increases of inspiratory muscle (IM) strength are limited to the lung volume (VL) at which the training occurs. IM strength training consisted of performing repeated static maximum inspiratory maneuvers. Three groups of normal volunteers performed these maneuvers at one of three lung volumes: residual volume (RV), relaxation volume (Vrel), or Vrel plus one-half of inspiratory capacity (Vrel + 1/2IC). A control group did not train. We constructed maximal inspiratory pressure-VL curves before and after a 6-wk training period. For each group, we found that the greatest improvements in strength occurred at the volume at which the subjects trained and were significantly greater for those who trained at low (36% for RV and 26% for Vrel) than at high volumes (13% for Vrel + 1/2IC). Smaller increments in strength were noted at volumes adjacent to the training volume. The range of vital capacity (VC) over which strength was increased was greater for those who trained at low (70% of VC) than at high VL (20% of VC). We conclude that the greatest improvements in IM strength are specific to the VL at which training occurs. However, the increase in strength, as well as the range of volume over which strength is increased, is greater for those who trained at the lower VL.


1962 ◽  
Vol 17 (5) ◽  
pp. 783-786 ◽  
Author(s):  
John S. Hanson ◽  
Burton S. Tabakin ◽  
Edgar J. Caldwell

Variations in size of the various lung volumes due to changes in body position and as a consequence of treadmill exercise were studied in five normal males. Assumption of the upright posture was associated with highly significant increases in total lung capacity, vital capacity, expiratory reserve volume, and residual volume as compared to resting supine values. Level walking was associated with a decrease of expiratory reserve volume, but a further expansion of residual volume. Vital capacity decreased slightly, but total lung capacity increased by virtue of the proportionately large residual volume increases. Elevation of the treadmill to 4° resulted in slight decreases in all lung volumes, total lung capacity evidencing a barely significant decline. Positional changes in ventilation are described, and on the basis of the “lung clearance index” an increased efficiency of ventilation is seen in the upright posture. Factors possibly operative in these alterations are discussed. Submitted on February 21, 1962


1977 ◽  
Vol 42 (6) ◽  
pp. 899-902 ◽  
Author(s):  
M. A. Hutcheon ◽  
J. R. Rodarte ◽  
R. E. Hyatt

Static lung volumes and static elastic recoil pressure (Pel) were measured in normal subjects breathing air and 80% helium plus 20% oxygen (He+O2). In 22 subjects, He+O2 produced small but significant increases in total lung capacity (TLC) (mean 0.11 liter, P less than 0.001) and residual volume (mean 0.10 liter, P less than 0.01) without change in vital capacity or functional residual capacity. The mechanisms for this change are obscure. In 10 subjects, breathing He+O2 had no significant effect on Pel (paired t-test) at any lung volume measured (50–80% TLC). In one subject, Pel at 70 and 80% TLC was significantly higher on air than on He+O2 (unpaired t-test, P less than 0.05). Because changes in lung volumes and lung recoil were small, we concluded that these effects do not negate the clinical utility of He+O2 flow-volume curves.


2005 ◽  
Vol 98 (3) ◽  
pp. 817-821 ◽  
Author(s):  
Francesco G. Salerno ◽  
Riccardo Pellegrino ◽  
Gianluca Trocchio ◽  
Antonio Spanevello ◽  
Vito Brusasco ◽  
...  

The effects of breathing depth in attenuating induced bronchoconstriction were studied in 12 healthy subjects. On four separate, randomized occasions, the depth of a series of five breaths taken soon (∼1 min) after methacholine (MCh) inhalation was varied from spontaneous tidal volume to lung volumes terminating at ∼80, ∼90, and 100% of total lung capacity (TLC). Partial forced expiratory flow at 40% of control forced vital capacity (V̇part) and residual volume (RV) were measured at control and again at 2, 7, and 11 min after MCh. The decrease in V̇part and the increase in RV were significantly less when the depth of the five-breath series was progressively increased ( P < 0.001), with a linear relationship. The attenuating effects of deep breaths of any amplitude were significantly greater on RV than V̇part ( P < 0.01) and lasted as long as 11 min, despite a slight decrease with time when the end-inspiratory lung volume was 100% of TLC. In conclusion, in healthy subjects exposed to MCh, a series of breaths of different depth up to TLC caused a progressive and sustained attenuation of bronchoconstriction. The effects of the depth of the five-breath series were more evident on the RV than on V̇part, likely due to the different mechanisms that regulate airway closure and expiratory flow limitation.


1980 ◽  
Vol 49 (4) ◽  
pp. 566-570 ◽  
Author(s):  
S. S. Cassidy ◽  
M. Ramanathan ◽  
G. L. Rose ◽  
R. L. Johnson

The diffusing capacity of the lung for carbon monoxide (DLCO) varies directly with lung volume (VA) when measured during a breath-holding interval. DLCO measured during a slow exhalation from total lung capacity (TLC) to functional residual capacity (FRC) does not vary as VA changes. Since VA is reached by inhaling during breath holding and by exhaling during the slow exhalation maneuver, we hypothesized that the variability in the relation between DLCO and VA was due to hysteresis. To test this hypothesis, breath-holding measurements of DLCO were made at three lung volumes, both when VA was reached by inhaling from residual volume (RV) and when Va was reached by exhaling from TLC. At 72% TLC, DLCO was 22% higher when VA was reached by exhalation compared to inhalation (P < 0.02). At 52% TLC, DLCO was 19% higher when VA was reached by exhalation compared to exhalation (P < 0.005). DCLO measured during a slow exhalation fell on the exhalation limb of the CLCO/VA curve. these data indicate that there is hysteresis in DLCO with respect to lung volume.


1994 ◽  
Vol 76 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. P. Gauthier ◽  
S. Verbanck ◽  
M. Estenne ◽  
C. Segebarth ◽  
P. T. Macklem ◽  
...  

The ability of the diaphragm to generate pressures at different lung volumes (VLs) in humans may be determined by the following factors: 1) its in vivo three-dimensional shape, radius of curvature, and tension according to Laplace law; 2) the relative degree to which it is apposed to the rib cage (i.e., zone of apposition) and lungs (i.e., diaphragm dome); and 3) its length-force properties. To gain more insight into these factors we have reconstructed from nuclear magnetic images the three-dimensional shape of the diaphragm of four normal subjects under supine relaxed conditions at four different VLs: residual volume, functional residual capacity, functional residual capacity plus one-half of the inspiratory capacity, and total lung capacity. Under our experimental conditions the shape of the diaphragm changes substantially in the anteroposterior plane but not in the coronal one. Multivariate regression analysis indicates that the zone of apposition is dependent on both diaphragm shortening and lower rib cage widening with lung inflation, although much more on the first of these two factors. Because of the changes in anteroposterior shape and expansion of the insertional origin at the costal margin with lung inflation, the data therefore suggest that the diaphragm may be more accurately modeled by a “widening piston” (Petroll's model) than a simple “piston in a cylinder” model. A significant portion of the muscular surface is lung apposed, suggesting that diaphragmatic force has radial vectors in the dome and vectors along the body axis in the zone of apposition. The muscular surface area of the diaphragm decreased linearly by approximately 41% with VL from residual volume to total lung capacity. Diaphragmatic fibers may shorten under physiological conditions more than any other skeletal muscle. The large changes in fiber length combined with limited shape changes with lung inflation suggest that the length-twitch force properties of the diaphragm may be the most important factor for the pressure-generating function of this respiratory muscle in response to bilateral phrenic shocks at different VLs.


1994 ◽  
Vol 77 (4) ◽  
pp. 2005-2014 ◽  
Author(s):  
A. R. Elliott ◽  
G. K. Prisk ◽  
H. J. Guy ◽  
J. B. West

Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (mu G) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of mu G exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (VT). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in mu G and 32% in the supine posture. ERV was reduced by 10–20% in mu G and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in mu G but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of mu G but returned to 1-G standing values within 72 h of mu G exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During mu G, VT decreased by 15% (approximately 90 ml), but supine VT was unchanged compared with preflight standing values. TLC decreased by approximately 8% during mu G and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during mu G are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.


1993 ◽  
Vol 36 (3) ◽  
pp. 516-520 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Nancy Pearl Solomon ◽  
Thomas J. Hixon

This investigation was designed to test the hypothesis that voice onset time (VOT) varies as a function of lung volume. Recordings were made of five men as they repeated a phrase containing stressed /pi/ syllables, beginning at total lung capacity and ending at residual volume. VOT was found to be longer at high lung volumes and shorter at low lung volumes in most cases. This finding points out the need to take lung volume into account when using VOT as an index of laryngeal behavior in both healthy individuals and those with speech disorders.


Sign in / Sign up

Export Citation Format

Share Document