Lung volumes during sustained microgravity on Spacelab SLS-1

1994 ◽  
Vol 77 (4) ◽  
pp. 2005-2014 ◽  
Author(s):  
A. R. Elliott ◽  
G. K. Prisk ◽  
H. J. Guy ◽  
J. B. West

Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (mu G) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of mu G exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (VT). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in mu G and 32% in the supine posture. ERV was reduced by 10–20% in mu G and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in mu G but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of mu G but returned to 1-G standing values within 72 h of mu G exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During mu G, VT decreased by 15% (approximately 90 ml), but supine VT was unchanged compared with preflight standing values. TLC decreased by approximately 8% during mu G and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during mu G are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.

PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshitake Yamada ◽  
Minoru Yamada ◽  
Shotaro Chubachi ◽  
Yoichi Yokoyama ◽  
Shiho Matsuoka ◽  
...  

Abstract Currently, no clinical studies have compared the inspiratory and expiratory volumes of unilateral lung or of each lobe among supine, standing, and sitting positions. In this prospective study, 100 asymptomatic volunteers underwent both low-radiation-dose conventional (supine position, with arms raised) and upright computed tomography (CT) (standing and sitting positions, with arms down) during inspiration and expiration breath-holds and pulmonary function test (PFT) on the same day. We compared the inspiratory/expiratory lung/lobe volumes on CT in the three positions. The inspiratory and expiratory bilateral upper and lower lobe and lung volumes were significantly higher in the standing/sitting positions than in the supine position (5.3–14.7% increases, all P < 0.001). However, the inspiratory right middle lobe volume remained similar in the three positions (all P > 0.15); the expiratory right middle lobe volume was significantly lower in the standing/sitting positions (16.3/14.1% decrease) than in the supine position (both P < 0.0001). The Pearson’s correlation coefficients (r) used to compare the total lung volumes on inspiratory CT in the supine/standing/sitting positions and the total lung capacity on PFT were 0.83/0.93/0.95, respectively. The r values comparing the total lung volumes on expiratory CT in the supine/standing/sitting positions and the functional residual capacity on PFT were 0.83/0.85/0.82, respectively. The r values comparing the total lung volume changes from expiration to inspiration on CT in the supine/standing/sitting positions and the inspiratory capacity on PFT were 0.53/0.62/0.65, respectively. The study results could impact preoperative CT volumetry of the lung in lung cancer patients (before lobectomy) for the prediction of postoperative residual pulmonary function, and could be used as the basis for elucidating undetermined pathological mechanisms. Furthermore, in addition to morphological evaluation of the chest, inspiratory and expiratory upright CT may be used as an alternative tool to predict lung volumes such as total lung capacity, functional residual capacity, and inspiratory capacity in situation in which PFT cannot be performed such as during an infectious disease pandemic, with relatively more accurate predictability compared with conventional supine CT.


1987 ◽  
Vol 62 (1) ◽  
pp. 39-46 ◽  
Author(s):  
T. L. Clanton ◽  
G. F. Dixon ◽  
J. Drake ◽  
J. E. Gadek

Lung volumes and inspiratory muscle (IM) function tests were measured in 16 competitive female swimmers (age 19 +/- 1 yr) before and after 12 wk of swim training. Eight underwent additional IM training; the remaining eight were controls. Vital capacity (VC) increased 0.25 +/- 0.25 liters (P less than 0.01), functional residual capacity (FRC) increased 0.39 +/- 0.29 liters (P less than 0.001), and total lung capacity (TLC) increased 0.35 +/- 0.47 (P less than 0.025) in swimmers, irrespective of IM training. Residual volume (RV) did not change. Maximum inspiratory mouth pressure (PImax) measured at FRC changed -43 +/- 18 cmH2O (P less than 0.005) in swimmers undergoing IM conditioning and -29 +/- 25 (P less than 0.05) in controls. The time that 65% of prestudy PImax could be endured increased in IM trainers (P less than 0.001) and controls (P less than 0.05). All results were compared with similar IM training in normal females (age 21.1 +/- 0.8 yr) in which significant increases in PImax and endurance were observed in IM trainers only with no changes in VC, FRC, or TLC (Clanton et al., Chest 87: 62–66, 1985). We conclude that 1) swim training in mature females increases VC, TLC, and FRC with no effect on RV, and 2) swim training increases IM strength and endurance measured near FRC.


1980 ◽  
Vol 49 (4) ◽  
pp. 566-570 ◽  
Author(s):  
S. S. Cassidy ◽  
M. Ramanathan ◽  
G. L. Rose ◽  
R. L. Johnson

The diffusing capacity of the lung for carbon monoxide (DLCO) varies directly with lung volume (VA) when measured during a breath-holding interval. DLCO measured during a slow exhalation from total lung capacity (TLC) to functional residual capacity (FRC) does not vary as VA changes. Since VA is reached by inhaling during breath holding and by exhaling during the slow exhalation maneuver, we hypothesized that the variability in the relation between DLCO and VA was due to hysteresis. To test this hypothesis, breath-holding measurements of DLCO were made at three lung volumes, both when VA was reached by inhaling from residual volume (RV) and when Va was reached by exhaling from TLC. At 72% TLC, DLCO was 22% higher when VA was reached by exhalation compared to inhalation (P < 0.02). At 52% TLC, DLCO was 19% higher when VA was reached by exhalation compared to exhalation (P < 0.005). DCLO measured during a slow exhalation fell on the exhalation limb of the CLCO/VA curve. these data indicate that there is hysteresis in DLCO with respect to lung volume.


1960 ◽  
Vol 15 (1) ◽  
pp. 40-42 ◽  
Author(s):  
Stanley S. Heller ◽  
William R. Hicks ◽  
Walter S. Root

Lung volume determinations (tidal volume, inspiratory capacity, inspiratory reserve volume, expiratory reserve volume, vital capacity, maximum breathing capacity, functional residual capacity, residual volume, and total lung capacity) were carried out on 16 professional singers and 21 subjects who had had no professional vocal training. No differences were found between the two groups of subjects, whether recumbent or standing, which could not be explained upon the basis of age, size, or errors involved in making the measurements. Submitted on March 24, 1959


1994 ◽  
Vol 76 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. P. Gauthier ◽  
S. Verbanck ◽  
M. Estenne ◽  
C. Segebarth ◽  
P. T. Macklem ◽  
...  

The ability of the diaphragm to generate pressures at different lung volumes (VLs) in humans may be determined by the following factors: 1) its in vivo three-dimensional shape, radius of curvature, and tension according to Laplace law; 2) the relative degree to which it is apposed to the rib cage (i.e., zone of apposition) and lungs (i.e., diaphragm dome); and 3) its length-force properties. To gain more insight into these factors we have reconstructed from nuclear magnetic images the three-dimensional shape of the diaphragm of four normal subjects under supine relaxed conditions at four different VLs: residual volume, functional residual capacity, functional residual capacity plus one-half of the inspiratory capacity, and total lung capacity. Under our experimental conditions the shape of the diaphragm changes substantially in the anteroposterior plane but not in the coronal one. Multivariate regression analysis indicates that the zone of apposition is dependent on both diaphragm shortening and lower rib cage widening with lung inflation, although much more on the first of these two factors. Because of the changes in anteroposterior shape and expansion of the insertional origin at the costal margin with lung inflation, the data therefore suggest that the diaphragm may be more accurately modeled by a “widening piston” (Petroll's model) than a simple “piston in a cylinder” model. A significant portion of the muscular surface is lung apposed, suggesting that diaphragmatic force has radial vectors in the dome and vectors along the body axis in the zone of apposition. The muscular surface area of the diaphragm decreased linearly by approximately 41% with VL from residual volume to total lung capacity. Diaphragmatic fibers may shorten under physiological conditions more than any other skeletal muscle. The large changes in fiber length combined with limited shape changes with lung inflation suggest that the length-twitch force properties of the diaphragm may be the most important factor for the pressure-generating function of this respiratory muscle in response to bilateral phrenic shocks at different VLs.


PEDIATRICS ◽  
1976 ◽  
Vol 58 (4) ◽  
pp. 537-541
Author(s):  
J. O. O. Commey ◽  
Henry Levison

In 62 children with bronchial asthma, the presence of subjective dyspnea and wheeze, and some physical signs commonly associated with chronic obstructive airway disease in older patients, were compared with results of routine pulmonary function tests. Overall, airway resistance and the relationships of residual volume and functional residual capacity to total lung capacity were increased and other measurements of pulmonary function were moderately decreased. The time-honored subjective dyspnea, wheeze, rhonchi, and prolonged expiration were least useful as indices of severity of disease. Most of the patients, particularly those in whom laboratory testing revealed marked impairment, had notable rhonchi, prolonged expiration, scalene muscle and sternocleidomastoid contraction, and supraclavicular indrawing. Only sternocleidomastoid contraction and supraclavicular indrawing clearly correlated with the severity of airway obstruction. A call is made for a search for these useful signs, whose presence may be the only clue to moderately severe disease; however, their absence does not guarantee absence of severe airway obstruction.


1961 ◽  
Vol 16 (2) ◽  
pp. 331-338 ◽  
Author(s):  
C. Emirgil ◽  
H. O. Heinemann

Fifteen patients, free from cardiac and pulmonary disease, but receiving radiotherapy for carcinoma of the breast or carcinoma of the lung, were studied to determine the effect of irradiation on pulmonary function. Lung volumes, the distribution of inspired air, the levels of gases in the arterial blood, the diffusing capacity of the lung, and the mechanics of breathing were measured before and at varying intervals after the completion of radiotherapy. The results showed: early and progressive reduction of inspiratory capacity (IC) and residual volume (RV), decreasing the total lung capacity (TLC) without changing the RV/TLC ratio; unchanged distribution of inspired air; mild hypoxemia at rest; reduced diffusing capacity of the lung for carbon monoxide; and an early and progressive decrease in pulmonary compliance. These observations indicate that irradiation of the chest is complicated by a decrease in lung volumes, an impairment of the diffusing capacity, and an increase in the work of breathing. Submitted on September 6, 1960


1993 ◽  
Vol 36 (3) ◽  
pp. 516-520 ◽  
Author(s):  
Jeannette D. Hoit ◽  
Nancy Pearl Solomon ◽  
Thomas J. Hixon

This investigation was designed to test the hypothesis that voice onset time (VOT) varies as a function of lung volume. Recordings were made of five men as they repeated a phrase containing stressed /pi/ syllables, beginning at total lung capacity and ending at residual volume. VOT was found to be longer at high lung volumes and shorter at low lung volumes in most cases. This finding points out the need to take lung volume into account when using VOT as an index of laryngeal behavior in both healthy individuals and those with speech disorders.


1983 ◽  
Vol 28 (4) ◽  
pp. 355-356 ◽  
Author(s):  
W. G. J. Smith ◽  
K. R. Patel ◽  
J. D. Briggs ◽  
B. J. R. Junor

Pulmonary function tests were performed in ten patients established on continuous ambulatory peritoneal dialysis. A decrease in all lung volumes was observed after instillation of dialysate and a further decrease on change from the erect to the supine posture. This change was small and unlikely to have a functionally significant effect in patients with a healthy respiratory system. However, in patients with pre-existing lung disease, respiratory function might be further compromised.


Sign in / Sign up

Export Citation Format

Share Document