Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest

1987 ◽  
Vol 63 (6) ◽  
pp. 2348-2359 ◽  
Author(s):  
P. D. Wagner ◽  
J. R. Sutton ◽  
J. T. Reeves ◽  
A. Cymerman ◽  
B. M. Groves ◽  
...  

Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80–90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1–2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.

1986 ◽  
Vol 61 (1) ◽  
pp. 260-270 ◽  
Author(s):  
P. D. Wagner ◽  
G. E. Gale ◽  
R. E. Moon ◽  
J. R. Torre-Bueno ◽  
B. W. Stolp ◽  
...  

In a previous study of normal subjects exercising at sea level and simulated altitude, ventilation-perfusion (VA/Q) inequality and alveolar-end-capillary O2 diffusion limitation (DIFF) were found to increase on exercise at altitude, but at sea level the changes did not reach statistical significance. This paper reports additional measurements of VA/Q inequality and DIFF (at sea level and altitude) and also of pulmonary arterial pressure. This was to examine the hypothesis that VA/Q inequality is related to increased pulmonary arterial pressure. In a hypobaric chamber, eight normal subjects were exposed to barometric pressures of 752, 523, and 429 Torr (sea level, 10,000 ft, and 15,000 ft) in random order. At each altitude, inert and respiratory gas exchange and hemodynamic variables were studied at rest and during several levels of steady-state bicycle exercise. Multiple inert gas data from the previous and current studies were combined (after demonstrating no statistical difference between them) and showed increasing VA/Q inequality with sea level exercise (P = 0.02). Breathing 100% O2 did not reverse this increase. When O2 consumption exceeded about 2.7 1/min, evidence for DIFF at sea level was present (P = 0.01). VA/Q inequality and DIFF increased with exercise at altitude as found previously and was reversed by 100% O2 breathing. Indexes of VA/Q dispersion correlated well with mean pulmonary arterial pressure and also with minute ventilation. This study confirms the development of both VA/Q mismatch and DIFF in normal subjects during heavy exercise at sea level. However, the mechanism of increased VA/Q mismatch on exercise remains unclear due to the correlation with both ventilatory and circulatory variables and will require further study.


2012 ◽  
Vol 31 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Elisabete Jorge ◽  
Rui Baptista ◽  
Henrique Faria ◽  
João Calisto ◽  
Vítor Matos ◽  
...  

Author(s):  
Selai Akseer ◽  
Lusine Abrahamyan ◽  
Douglas S. Lee ◽  
Ella Huszti ◽  
Lukas M. Meier ◽  
...  

Background: Pulmonary hypertension (PH), recently redefined as mean pulmonary arterial pressure >20 mm Hg (PH 20 ), may be observed in patients with atrial septal defects (ASD). We aimed to determine the effect of preprocedural PH 20 status on outcomes among patients undergoing ASD closure. Methods: Study population was selected from a retrospective registry of adult patients who underwent percutaneous ASD closure from 1998 to 2016 from a single center and had right heart catheterizations during the procedure. The clinical registry was linked to administrative databases to capture short- and long-term outcomes. Results: We included a total of 632 ASD closure patients of whom 359 (56.8%) had PH 20 . The mean follow-up length was 7.6±4.6 years. Patients with PH 20 were older (mean age 56.5 versus 43.1 years, P <0.001) and a higher prevalence of comorbidities including hypertension (54.3% versus 21.6%, P <0.001) and diabetes (18.1% versus 5.9%, P <0.001) than those without PH. In a Cox proportional hazards model after covariate adjustment, patients with PH had a significantly higher risk of developing major adverse cardiac and cerebrovascular events (heart failure, stroke, myocardial infarction, or cardiovascular mortality), with hazards ratio 2.45 (95% CI, 1.4–4.4). When applying the prior, mean pulmonary arterial pressure ≥25 mm Hg (PH 25 ) cutoff, a significantly higher hazard of developing major adverse cardiac and cerebrovascular events was observed in PH versus non-PH patients. Conclusions: ASD patients with PH undergoing closure suffer from more comorbidities and worse long-term major adverse cardiac and cerebrovascular events outcomes, compared with patients without PH. The use of the new PH 20 definition potentially dilutes the effect of this serious condition on outcomes in this population.


2004 ◽  
Vol 96 (2) ◽  
pp. 463-468 ◽  
Author(s):  
Eric Laffon ◽  
Christophe Vallet ◽  
Virginie Bernard ◽  
Michel Montaudon ◽  
Dominique Ducassou ◽  
...  

The present method enables the noninvasive assessment of mean pulmonary arterial pressure from magnetic resonance phase mapping by computing both physical and biophysical parameters. The physical parameters include the mean blood flow velocity over the cross-sectional area of the main pulmonary artery (MPA) at the systolic peak and the maximal systolic MPA cross-sectional area value, whereas the biophysical parameters are related to each patient, such as height, weight, and heart rate. These parameters have been measured in a series of 31 patients undergoing right-side heart catheterization, and the computed mean pulmonary arterial pressure value (PpaComp) has been compared with the mean pressure value obtained from catheterization (PpaCat) in each patient. A significant correlation was found that did not differ from the identity line PpaComp = PpaCat ( r = 0.92). The mean and maximal absolute differences between PpaComp and PpaCat were 5.4 and 11.9 mmHg, respectively. The method was also applied to compute the MPA systolic and diastolic pressures in the same patient series. We conclude that this computed method, which combines physical (whoever the patient) and biophysical parameters (related to each patient), improves the accuracy of MRI to noninvasively estimate pulmonary arterial pressures.


1982 ◽  
Vol 52 (3) ◽  
pp. 705-709 ◽  
Author(s):  
B. R. Walker ◽  
N. F. Voelkel ◽  
J. T. Reeves

Recent studies have shown that vasodilator prostaglandins are continually produced by the isolated rat lung. We postulated that these vasodilators may contribute to maintenance of normal low pulmonary arterial pressure. Pulmonary pressure and cardiac output were measured in conscious dogs prior to and 30 to 60 min following administration of meclofenamate (2 mg/kg iv, followed by infusion at 2 mg . kg-1 . h-1) or the structurally dissimilar inhibitor RO–20–5720 (1 mg/kg iv, followed by infusion at 1 mg . kg-1 . h-1). The animals were also made hypoxic with inhalation of 10% O2 before and after inhibition. Time-control experiments were conducted in which only the saline vehicle was administered. Meclofenamate or RO–20–5720 caused an increase in mean pulmonary arterial pressure and total pulmonary resistance. Cardiac output and systemic pressure were unaffected. The mild hypoxic pulmonary pressor response observed was not affected by meclofenamate. Animals breathing 30% O2 to offset Denver's altitude also demonstrated increased pulmonary pressure and resistance when given meclofenamate. It is concluded that endogenous vasodilator prostaglandins may contribute to normal, low vascular tone in the pulmonary circulation.


2020 ◽  
Vol 41 (8) ◽  
pp. 1651-1659
Author(s):  
Ida Jeremiasen ◽  
Karin Tran-Lundmark ◽  
Nikmah Idris ◽  
Phan-Kiet Tran ◽  
Shahin Moledina

AbstractIn children with single ventricle physiology, increased pulmonary vascular resistance may impede surgical progression or result in failing single ventricle physiology. The use of pulmonary vasodilators has been suggested as a potential therapy. However, knowledge on indication, dosage, and effect is limited. A retrospective case notes review of all (n = 36) children with single ventricle physiology, treated with pulmonary vasodilators by the UK Pulmonary Hypertension Service for Children 2004–2017. Therapy was initiated in Stage 1 (n = 12), Glenn (n = 8), or TCPC (n = 16). Treatment indications were high mean pulmonary arterial pressure, cyanosis, reduced exercise tolerance, protein-losing enteropathy, ascites, or plastic bronchitis. Average dose of sildenafil was 2.0 mg/kg/day and bosentan was 3.3 mg/kg/day. 56% had combination therapy. Therapy was associated with a reduction of the mean pulmonary arterial pressure from 19 to 14 mmHg (n = 17, p < 0.01). Initial therapy with one or two vasodilators was associated with an increase in the mean saturation from 80 to 85%, (n = 16, p < 0.01). Adding a second vasodilator did not give significant additional effect. 5 of 12 patients progressed from Stage 1 to Glenn, Kawashima, or TCPC, and 2 of 8 from Glenn to TCPC during a mean follow-up time of 4.7 years (0–12.8). Bosentan was discontinued in 57% and sildenafil in 14% of treated patients and saturations remained stable. Pulmonary vasodilator therapy was well tolerated and associated with improvements in saturation and mean pulmonary arterial pressure in children with single ventricle physiology. It appears safe to discontinue when no clear benefit is observed.


1997 ◽  
Vol 272 (6) ◽  
pp. R1734-R1739 ◽  
Author(s):  
G. Losonczy ◽  
G. Brown ◽  
I. Mucha ◽  
R. Klocke ◽  
V. Muller ◽  
...  

Pregnancy is associated with the reduction of vascular sensitivity to vasoconstrictor compounds. We have examined whether pregnancy in rabbits induces hyposensitivity of the pulmonary vascular system to U-46619. Anesthetized, mechanically ventilated nonpregnant (NP; n = 7) and late-pregnant (P; n = 7) rabbits were studied. The intravenous injection of 0.03, 0.1, and 0.3 microgram/kg U-46619 led to a dose-dependent elevation of mean pulmonary arterial pressure (MPAP) in NP rabbits from a baseline value of 15 +/- 1 to 22 +/- 1 mgHg. There was no significant MPAP response to intravenous administration of U-46619 in P rabbits. The pulmonary arterial pressure response of isolated, ventilated, and buffer-perfused lungs of P rabbits was also blunted (P < 0.001 vs. NP). Pulmonary arterial membrane binding of [125I]BOP, another thromboxane (Tx)A2 analog, indicated 48 +/- 16 fmol receptors/mg protein in P rabbits and 193 +/- 48 fmol receptors/mg protein in NP samples (P < 0.025). Receptor affinity [1/dissociation constant (KD)] was also lower in the tissue of P rabbits (P < 0.01 vs. NP). The urinary excretion of the stable TxA2 metabolite 11-dehydro-TxB2 was lower in P than in NP rabbits (P < 0.02), which made homologous desensitization an unlikely explanation for the changes of vascular TxA2 receptors. These results show that, in late gestation, rabbit pulmonary vascular sensitivity to U-46619 is reduced simultaneously with, and as a possible consequence of, downregulation of specific receptors.


1991 ◽  
Vol 70 (4) ◽  
pp. 1518-1523 ◽  
Author(s):  
W. J. Lamm ◽  
K. R. Kirk ◽  
W. L. Hanson ◽  
W. W. Wagner ◽  
R. K. Albert

We have previously observed flows equivalent to 15% of the resting cardiac output of rabbits occurring through isolated lungs that were completely in zone 1. To distinguish between alveolar corner vessels and alveolar septal vessels as a possible zone 1 pathway, we made in vivo microscopic observations of the subpleural alveolar capillaries in five anesthetized dogs. Videomicroscopic recordings were made via a transparent thoracic window with the animal in the right lateral position. From recordings of the uppermost surface of the left lung, alveolar septal and corner vessels were classified depending on whether they were located within or between alveoli, respectively. Observations were made with various levels of positive end-expiratory pressure (PEEP) applied only to the left lung via a double-lumen endotracheal tube. Consistent with convention, flow through septal vessels stopped when PEEP was raised to the mean pulmonary arterial pressure (the zone 1-zone 2 border). However, flow through alveolar corner vessels continued until PEEP was 8-16 cmH2O greater than mean pulmonary arterial pressure (8-16 cm into zone 1). These direct observations support the idea that alveolar corner vessels rather than patent septal vessels provide the pathway for blood flow under zone 1 conditions.


Sign in / Sign up

Export Citation Format

Share Document