Effect of sleep and sleep deprivation on ventilatory response to bronchoconstriction

1990 ◽  
Vol 69 (2) ◽  
pp. 490-497 ◽  
Author(s):  
R. D. Ballard ◽  
W. C. Tan ◽  
P. L. Kelly ◽  
J. Pak ◽  
R. Pandey ◽  
...  

To characterize ventilatory responses to bronchoconstriction during sleep and to assess the effect of prior sleep deprivation on ventilatory and arousal responses to bronchoconstriction, bronchoconstriction was induced in eight asthmatic subjects while they were awake, during normal sleep, and during sleep after a 36-h period of sleep deprivation. Each subject was bronchoconstricted with increasing concentrations of aerosolized methacholine while ventilatory patterns and lower airway resistance (Rla) were continually monitored. The asthmatic patients maintained their minute ventilation as Rla increased under all conditions, demonstrating a stable tidal volume with a mild increase in respiratory frequency. Inspiratory drive, as measured by occlusion pressure (P0.1), increased progressively and significantly as Rla increased under all conditions (slopes of P0.1 vs. Rla = 0.249, 0.112, and 0.154 for awake, normal sleep, and sleep after sleep deprivation, respectively, P less than 0.0006). Chemostimuli did not appear to contribute significantly to the observed increases in P0.1. Prior sleep deprivation had no effect on ventilatory and P0.1 responses to bronchoconstriction but did significantly raise the arousal threshold to induced bronchoconstriction. We conclude that ventilatory responses to bronchoconstriction, unlike extrinsic loading, are not imparied by the presence of sleep, nor are they chemically mediated. However, prior sleep deprivation does increase the subsequent arousal threshold.

1989 ◽  
Vol 67 (1) ◽  
pp. 243-249 ◽  
Author(s):  
R. D. Ballard ◽  
M. C. Saathoff ◽  
D. K. Patel ◽  
P. L. Kelly ◽  
R. J. Martin

To assess the effect of sleep on airflow resistance and patterns of ventilation in asthmatic patients with nocturnal worsening, 10 adult subjects (6 asthmatic patients with nocturnal worsening, 4 normal controls) were monitored overnight in the sleep laboratory on two separate occasions. During 1 night, subjects were allowed to sleep normally, whereas during the other night all sleep was prevented. The six asthmatic patients demonstrated progressive increases in lower airway resistance (Rla) on both nights, but the rate of increase was twofold greater (P less than 0.0001) during the sleep night compared with the sleep prevention night. However, overnight decrements in forced expired volume in 1 s (FEV1) were similar over the 2 nights. The asthmatic patients maintained their minute ventilation as Rla increased during sleep, demonstrating a stable tidal volume with a mild increase in respiratory frequency. We conclude that in asthmatic patients with nocturnal worsening 1) Rla increases and FEV1 falls overnight regardless of sleep state, 2) sleep enhances the observed overnight increases in Rla, and 3) sleep does not abolish compensatory ventilatory responses to spontaneously occurring bronchoconstriction.


1988 ◽  
Vol 65 (4) ◽  
pp. 1520-1524 ◽  
Author(s):  
Y. Tanaka ◽  
T. Morikawa ◽  
Y. Honda

Breathing pattern and steady-state CO2 ventilatory response during mouth breathing were compared with those during nose breathing in nine healthy adults. In addition, the effect of warming and humidification of the inspired air on the ventilatory response was observed during breathing through a mouthpiece. We found the following. 1) Dead space and airway resistance were significantly greater during nose than during mouth breathing. 2) The slope of CO2 ventilatory responses did not differ appreciably during the two types of breathing, but CO2 occlusion pressure response was significantly enhanced during nose breathing. 3) Inhalation of warm and humid air through a mouthpiece significantly depressed CO2 ventilation and occlusion pressure responses. These results fit our observation that end-tidal PCO2 was significantly higher during nose than during mouth breathing. It is suggested that a loss of nasal functions, such as during nasal obstruction, may result in lowering of CO2, fostering apneic spells during sleep.


1983 ◽  
Vol 54 (4) ◽  
pp. 874-879 ◽  
Author(s):  
D. P. White ◽  
N. J. Douglas ◽  
C. K. Pickett ◽  
J. V. Weil ◽  
C. W. Zwillich

Previous investigation has demonstrated that progesterone, a hormone found in premenopausal women, is a ventilatory stimulant. However, fragmentary data suggest that normal women may have lower ventilatory responses to chemical stimuli than men, in whom progesterone is found at low levels. As male-female differences have not been carefully studied, we undertook a systematic comparison of resting ventilation and ventilatory responses to chemical stimuli in men and women. Resting ventilation was found to correlate closely with CO2 production in all subjects (r = 0.71, P less than 0.001), but women tended to have a greater minute ventilation per milliliter of CO2 produced (P less than 0.05) and consequently a lower CO2 partial pressure (PCO2) (men 35.1 +/- 0.5 Torr, women 33.2 +/- 0.5 Torr; P less than 0.02). Women were also found to have lower tidal volumes, even when corrected from body surface area (BSA), and greater respiratory frequency than comparable males. The hypoxic ventilatory response (HVR) quantitated by the shape parameter A was significantly greater in men [167 +/- 22 (SE)] than in women (109 +/- 13; P less than 0.05). In men this hypoxic response was found to correlate closely with O2 consumption (r = 0.75, P less than 0.001) but with no measure of size or metabolic rate in women. The hypercapnic ventilatory response, expressed as the slope of ventilation vs. PCO2, was also greater in men (2.30 +/- 0.23) than in women (1.58 +/- 0.19, P less than 0.05). Finally women tended to have higher ventilatory responses in the luteal than in the follicular menstrual phase, but this was significant only for HVR (P less than 0.05). Women, with relatively higher resting ventilation, have lower responses to hypoxia and hypercapnia.


2001 ◽  
Vol 91 (5) ◽  
pp. 1962-1970 ◽  
Author(s):  
Fang Han ◽  
Shyam Subramanian ◽  
Thomas E. Dick ◽  
Ismail A. Dreshaj ◽  
Kingman P. Strohl

Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (V˙e), respiratory frequency (f), tidal volume (Vt), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static pressure-volume curves were also performed. In 12 males for each strain, after 5 min of 8% O2 exposure, B6 mice had a prominent decrease inV˙e on reoxygenation with either air (−11%) or 100% O2 (−20%), due to the decline of f. In contrast, A/J animals had no ventilatory undershoot or f decline. After 5 min of 3% CO2-10% O2 exposure, B6 exhibited significant decrease in V˙e (−28.4 vs. −38.7%, air vs. 100% O2) and f (−13.8 vs. −22.3%, air vs. 100% O2) during reoxygenation with both air and 100% O2; however, A/J mice showed significant increase inV˙e (+116%) and f (+62.2%) during air reoxygenation and significant increase in V˙e (+68.2%) during 100% O2 reoxygenation. There were no strain differences in dynamic airway resistance during gas challenges or in steady-state total respiratory compliance measured postmortem. Strain differences in ventilatory responses to reoxygenation indicate that genetic mechanisms strongly influence posthypoxic ventilatory behavior.


2004 ◽  
Vol 97 (5) ◽  
pp. 1673-1680 ◽  
Author(s):  
Chris Morelli ◽  
M. Safwan Badr ◽  
Jason H. Mateika

We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 ± 0.82 vs. women, 4.70 ± 0.77 l·min−1·Torr−1; 150 Torr: men, 4.33 ± 1.15 vs. women, 3.21 ± 0.58 l·min−1·Torr−1). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 ± 1.40 vs. women, 5.97 ± 0.71 l·min−1·Torr−1; 150 Torr: men, 5.73 ± 0.81 vs. women, 3.83 ± 0.56 l·min−1·Torr−1). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.


1993 ◽  
Vol 74 (1) ◽  
pp. 230-237 ◽  
Author(s):  
E. R. Swenson ◽  
J. M. Hughes

The effects of acetazolamide (ACTZ) on ventilatory control are thought to be mediated by metabolic acidosis. However, carbonic anhydrase (CA) inhibition within brain and chemoreceptors and tissue respiratory acidosis may also be important. We compared the acute effects of ACTZ (tissue respiratory acidosis and tissue CA inhibition without metabolic acidosis) on ventilation and ventilatory control with chronic ACTZ (acute effects plus metabolic acidosis). Five men were studied 1 h after 500 mg iv ACTZ or 0.9% saline (acute effects) and also after three doses of ACTZ (500 mg po every 6 h; chronic effects). Minute ventilation (VE), steady-state hypercapnic ventilatory response (HCVR), and hypoxic ventilatory response (HVR) were measured with respiratory inductance plethysmography. Resting VE was increased equally by acute and chronic ACTZ. HCVR increased with chronic ACTZ in hyperoxia and even further in hypoxia. In contrast, acute ACTZ had no effect on the HCVR slope in hyperoxia and suppressed its augmentation by hypoxia. HVR was fully suppressed by acute ACTZ but unchanged with chronic ACTZ. ACTZ also slowed the rate of full ventilatory response to CO2. These findings show that CA inhibitors affect ventilatory control in a complex fashion, not only through changes in systemic acid-base balance but also by central and peripheral chemoreceptor inhibition.


2000 ◽  
Vol 88 (6) ◽  
pp. 2023-2030 ◽  
Author(s):  
S. A. Shore ◽  
J. H. Abraham ◽  
I. N. Schwartzman ◽  
G. G. Krishna Murthy ◽  
J. D. Laporte

During ozone (O3) exposure, adult rats decrease their minute ventilation (V˙e). To determine whether such changes are also observed in immature animals, Sprague-Dawley rats, aged 2, 4, 6, 8, or 12 wk, were exposed to O3(2 ppm) in nose-only-exposure plethysmographs. BaselineV˙e normalized for body weight decreased with age from 2.1 ± 0.1 ml ⋅ min−1⋅ g−1in 2-wk-old rats to 0.72 ± 0.03 ml ⋅ min−1⋅ g−1in 12-wk-old rats, consistent with the higher metabolic rates of younger animals. In adult (8- and 12-wk-old) rats, O3caused 40–50% decreases in V˙e that occurred primarily as the result of a decrease in tidal volume. In 6-wk-old rats, O3-induced changes inV˙e were significantly less, and in 2- and 4-wk-old rats, no significant changes inV˙e were observed during O3exposure. The increased baseline V˙e and the smaller decrements in V˙e induced by O3in the immature rats imply that their delivered dose of O3is much higher than in adult rats. To determine whether these differences in O3dose influence the extent of injury, we measured bronchoalveolar lavage protein concentrations. The magnitude of the changes in bronchoalveolar lavage induced by O3was significantly greater in 2- than in 8-wk-old rats (267 ± 47 vs. 165 ± 22%, respectively, P < 0.05). O3exposure also caused a significant increase in PGE2in 2-wk-old but not in adult rats. The results indicate that the ventilatory response to O3is absent in 2-wk-old rats and that lack of this response, in conjunction with a greater specific ventilation, leads to greater lung injury.


1984 ◽  
Vol 56 (3) ◽  
pp. 602-606 ◽  
Author(s):  
S. Y. Huang ◽  
J. K. Alexander ◽  
R. F. Grover ◽  
J. T. Maher ◽  
R. E. McCullough ◽  
...  

Hypoxia at high altitude stimulates ventilation, but inhibitory influences in the first days after arrival limit the ventilatory response. Possible inhibitory influences include hypocapnia and depression of ventilation during sustained hypoxia. Our approach was to compare hypoxic ventilatory responses at low altitude with ventilation at high altitude. In 12 subjects we compared responses both to isocapnic hypoxia and poikilocapnic (no CO2 added) hypoxia during acute (less than 10 min) and sustained (30 min) hypoxia in Denver (1,600 m) with ventilations measured on each of 5 days on Pikes Peak (4,300 m). On Pikes Peak, day 1 ventilation [minute ventilation = 10.0 1/min, BTPS; arterial O2 saturation (Sao2) = 82%] was less than predicted by either acute isocapnic or poikilocapnic tests. However, sustained poikilocapnic hypoxia (Sao2 approximately = 82%) in Denver yielded ventilation similar to that on Pikes Peak on day 1. By Pikes Peak days 4 and 5, endtidal PCO2, pHa, and Sao2 approached plateaus, and ventilation (12.4 1/min, BTPS) on these days was as predicted by the acute isocapnic test. Thus the combination of hypocapnia and sustained hypoxia may have blunted the ventilatory increase on Pikes Peak day 1 but apparently not after 4 or 5 days of acclimatization.


1986 ◽  
Vol 60 (3) ◽  
pp. 997-1002 ◽  
Author(s):  
D. L. Maxwell ◽  
P. Chahal ◽  
K. B. Nolop ◽  
J. M. Hughes

The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52–55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.


1984 ◽  
Vol 56 (1) ◽  
pp. 84-90 ◽  
Author(s):  
M. A. Bureau ◽  
R. Zinman ◽  
P. Foulon ◽  
R. Begin

The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.


Sign in / Sign up

Export Citation Format

Share Document