Parasternal and external intercostal muscle shortening during eupneic breathing

1990 ◽  
Vol 69 (6) ◽  
pp. 2222-2226 ◽  
Author(s):  
A. F. DiMarco ◽  
J. R. Romaniuk ◽  
G. S. Supinski

The interosseous external intercostal (EI) muscles of the upper rib cage are electrically active during inspiration, but the mechanical consequence of their activation is unclear. In 16 anesthetized dogs, we simultaneously measured EI (3rd and 4th interspaces) and parasternal intercostal (PA) (3rd interspace) electromyogram and length. Muscle length was measured by sonomicrometry and expressed as a percentage of resting length (%LR). During resting breathing, each muscle was electrically active and shortened to a similar extent. Sequential EI muscle denervation (3rd and 4th interspaces) followed by PA denervation (3rd interspace) demonstrated significant reductions in the degree of inspiratory shortening for each muscle. Mean EI muscle shortening of the third and fourth interspaces decreased from -3.4 +/- 0.5 and -3.0 +/- 0.4% LR (SE) under control conditions to -0.2 +/- 0.2 and -0.8 +/- 0.3% LR, respectively, after selective denervation of each of these muscles (P less than 0.001 for each). After selective denervation of the PA muscle, its shortening decreased from -3.5 +/- 0.3 to +0.6% LR (SE) (P less than 0.001). PA muscle denervation also caused the EI muscle in the third interspace to change from inspiratory shortening of -0.2% to inspiratory lengthening of +0.2% +/- 0.2 (P less than 0.05). We conclude that during eupneic breathing 1) the EI muscles of the upper rib cage, like the PA muscles, are inspiratory agonists and actively contribute to rib cage expansion and 2) PA muscle contraction contributes to EI muscle shortening.

1990 ◽  
Vol 69 (6) ◽  
pp. 2227-2232 ◽  
Author(s):  
F. J. Bosso ◽  
S. A. Lang ◽  
M. B. Maron

The interosseous external intercostal (EI) muscles of the upper rib cage are electrically active during inspiration, but the mechanical consequence of their activation is unclear. In 16 anesthetized dogs, we simultaneously measured EI (3rd and 4th interspaces) and parasternal intercostal (PA) (3rd interspace) electromyogram and length. Muscle length was measured by sonomicrometry and expressed as a percentage of resting length (%LR). During resting breathing, each muscle was electrically active and shortened to a similar extent. Sequential EI muscle denervation (3rd and 4th interspaces) followed by PA denervation (3rd interspace) demonstrated significant reductions in the degree of inspiratory shortening for each muscle. Mean EI muscle shortening of the third and fourth interspaces decreased from -3.4 +/- 0.5 and -3.0 +/- 0.4% LR (SE) under control conditions to -0.2 +/- 0.2 and -0.8 +/- 0.3% LR, respectively, after selective denervation of each of these muscles (P less than 0.001 for each). After selective denervation of the PA muscle, its shortening decreased from -3.5 +/- 0.3 to +0.6% LR (SE) (P less than 0.001). PA muscle denervation also caused the EI muscle in the third interspace to change from inspiratory shortening of -0.2% to inspiratory lengthening of +0.2% +/- 0.2 (P less than 0.05). We conclude that during eupneic breathing 1) the EI muscles of the upper rib cage, like the PA muscles, are inspiratory agonists and actively contribute to rib cage expansion and 2) PA muscle contraction contributes to EI muscle shortening.


1992 ◽  
Vol 73 (3) ◽  
pp. 979-986 ◽  
Author(s):  
A. F. DiMarco ◽  
J. R. Romaniuk ◽  
G. S. Supinski

Recent studies suggest that the external intercostal (EI) muscles of the upper rib cage, like the parasternals (PA), play an important ventilatory role, even during eupneic breathing. The purpose of the present study was to further assess the ventilatory role of the EI muscles by determining their response to various static and dynamic respiratory maneuvers and comparing them with the better-studied PA muscles. Applied interventions included 1) passive inflation and deflation, 2) abdominal compression, 3) progressive hypercapnia, and 4) response to bilateral cervical phrenicotomy. Studies were performed in 11 mongrel dogs. Electromyographic (EMG) activities were monitored via bipolar stainless steel electrodes. Muscle length (percentage of resting length) was monitored with piezoelectric crystals. With passive rib cage inflation produced either with a volume syringe or abdominal compression, each muscle shortened; with passive deflation, each muscle lengthened. During eupneic breathing, each muscle was electrically active and shortened to a similar degree. In response to progressive hypercapnia, peak EMG of each intercostal muscle increased linearly and to a similar extent. Inspiratory shortening also increased progressively with increasing PCO2, but in a curvilinear fashion with no significant differences in response among intercostal muscles. In response to phrenicotomy, the EMG and degree of inspiratory shortening of each intercostal muscle increased significantly. Again, the response among intercostal muscles was not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 75 (6) ◽  
pp. 2360-2367 ◽  
Author(s):  
A. F. DiMarco ◽  
G. S. Supinski ◽  
B. Simhai ◽  
J. R. Romaniuk

The pattern of electrical activation and muscle length changes of the internal intercostal (II) muscles (9th or 10th interspace) of the lower rib cage were evaluated in supine anesthetized dogs. Studies were performed during resting breathing and expiratory threshold loading. Results were compared with simultaneous measurements of the better-studied triangularis sterni muscle (4th interspace). In general, both muscles lengthened with passive inflation and shortened with passive deflation. During resting breathing, both the II and TS muscles were electrically active and shortened below resting length, 7.7 +/- 1.6% (SE) and 5.3 +/- 1.7%, respectively. With the addition of positive end-expiratory pressure, the degree of electrical activation and muscle shortening increased progressively for both muscles, although to a somewhat greater extent for II muscles. Isolated denervation of the II muscles eliminated their shortening during resting breathing and often resulted in muscle lengthening, indicating that II muscle shortening was secondary to its own activation. Expiration was associated with lateral inward movement of the lower rib cage below its relaxation position. This motion was not significantly affected by abdominal muscle section but was markedly reduced by bilateral II denervation (7th-11th spaces). Our results indicate that the II muscles of the lower rib cage 1) are electrically active and shorten below resting length during resting breathing, 2) respond to positive end-expiratory pressure by increasing their level of activation and degree of shortening, and 3) are primarily responsible for inward lateral motion of the lower rib cage below its relaxation position during expiration.


2004 ◽  
Vol 96 (6) ◽  
pp. 2120-2124 ◽  
Author(s):  
A. F. DiMarco ◽  
A. F. Connors ◽  
K. E. Kowalski

In patients with diaphragm paralysis, ventilation to the basal lung zones is reduced, whereas in patients with paralysis of the rib cage muscles, ventilation to the upper lung zones in reduced. Inspiration produced by either rib cage muscle or diaphragm contraction alone, therefore, may result in mismatching of ventilation and perfusion and in gas-exchange impairment. To test this hypothesis, we assessed gas exchange in 11 anesthetized dogs during ventilation produced by either diaphragm or intercostal muscle contraction alone. Diaphragm activation was achieved by phrenic nerve stimulation. Intercostal muscle activation was accomplished by electrical stimulation by using electrodes positioned epidurally at the T2 spinal cord level. Stimulation parameters were adjusted to provide a constant tidal volume and inspiratory flow rate. During diaphragm (D) and intercostal muscle breathing (IC), mean arterial Po2 was 97.1 ± 2.1 and 88.1 ± 2.7 Torr, respectively ( P < 0.01). Arterial Pco2 was lower during D than during IC (32.6 ± 1.4 and 36.6 ± 1.8 Torr, respectively; P < 0.05). During IC, oxygen consumption was also higher than that during D (0.13 ± 0.01 and 0.09 ± 0.01 l/min, respectively; P < 0.05). The alveolar-arterial oxygen difference was 11.3 ± 1.9 and 7.7 ± 1.0 Torr ( P < 0.01) during IC and D, respectively. These results indicate that diaphragm breathing is significantly more efficient than intercostal muscle breathing. However, despite marked differences in the pattern of inspiratory muscle contraction, the distribution of ventilation remains well matched to pulmonary perfusion resulting in preservation of normal gas exchange.


2002 ◽  
Vol 92 (4) ◽  
pp. 1642-1646 ◽  
Author(s):  
Matteo Cappello ◽  
André De Troyer

To assess the respiratory function of the ribs, we measured the changes in airway opening pressure (Pao) induced by stimulation of the parasternal and external intercostal muscles in anesthetized dogs, first before and then after the bony ribs were removed from both sides of the chest. Stimulating either set of muscles with the rib cage intact elicited a fall in Pao in all animals. After removal of the ribs, however, the fall in Pao produced by the parasternal intercostals was reduced by 60% and the fall produced by the external intercostals was eliminated. The normal outward curvature of the rib cage was also abolished in this condition, and when the curvature was restored by a small inflation, external intercostal stimulation consistently elicited a rise rather than a fall in Pao. These findings thus confirm that the ribs play a critical role in the act of breathing by converting intercostal muscle shortening into lung volume expansion. In addition, they carry the compression that is required to balance the pressure difference across the chest wall.


2018 ◽  
Vol 125 (4) ◽  
pp. 1165-1170 ◽  
Author(s):  
Guangzhi Zhang ◽  
Xian Chen ◽  
Junji Ohgi ◽  
Fei Jiang ◽  
Seiryo Sugiura ◽  
...  

The effect of intercostal muscle contraction on generating rib motion has been investigated for a long time and is still controversial in physiology. This may be because of the complicated structure of the rib cage, making direct prediction of the relationship between intercostal muscle force and rib movement impossible. Finite element analysis is a useful tool that is good at solving complex structural mechanic problems. In this study, we individually activated the intercostal muscle groups from the dorsal to ventral portions and obtained five different rib motions classified based on rib moving directions. We found that the ribs cannot only rigidly rotate around the spinal joint but also be deformed, particularly around the relatively soft costal cartilages, where the moment of muscle force for the rigid rotation is small. Although the intercostal muscles near the costal cartilages cannot generate a large moment to rotate the ribs, the muscles may still have a potential to deform the costal cartilages and contribute to the expansion and contraction of the rib cage based on the force-length relationship. Our results also indicated that this potential is matched well with the special shape of the costal cartilages, which become progressively oblique in the caudal direction. Compared with the traditional explanation of rib motion, by additionally considering the effect from the tissue deformation, we found that the special structure of the ventral portion of the human rib cage could be of mechanical benefit to the intercostal muscles, generating inspiratory and expiratory rib motions. NEW & NOTEWORTHY Compared with the traditional explanation of rib motion, additionally considering the effect from tissue deformation helps us understand the special structure of the ventral portion of the human rib cage, such that the costal cartilages progressively become oblique and the costochondral junction angles gradually change into nearly right angles from the upper to lower ribs, which could be of mechanical benefit to the intercostal muscles in the ventral portion, generating inspiratory and expiratory rib motions.


1986 ◽  
Vol 60 (5) ◽  
pp. 1686-1691 ◽  
Author(s):  
M. Decramer ◽  
S. Kelly ◽  
A. De Troyer

In an attempt to assess the physiological function(s) of the external (E) and internal interosseous (I) intercostal muscles, we measured the changes in intercostal muscle length during spontaneous breathing, during passive inflation, and during passive rotation of the trunk. Studies were performed on 46 muscles from 16 supine anesthetized dogs, and changes in muscle length were assessed by sonomicrometry. The changes were small during spontaneous breathing, whether before or after bilateral phrenicotomy, and the pattern was variable among animals and among interspaces. The E, however, particularly in the lower interspaces, often lengthened with inspiration, and the I, in particular in the upper interspaces, often shortened with inspiration. Only occasionally did the E and I in one interspace change in length in opposing directions. This was also true during passive inflation, where both E and I usually shortened in the upper interspaces and lengthened in the lower interspaces. By contrast, during passive rotation of the trunk, the E and I systematically changed in length in opposing directions, and either muscle could successively lengthen and shorten a substantial amount depending on the side of rotation. These results suggest that 1) the E and I in supine dogs do not behave as antagonistic muscles during moderate respiratory efforts; and 2) they do behave as antagonistic muscles during rotation of the trunk. A primary function of these muscles as rotators of the trunk, unlike breathing, may explain why two layers of intercostal muscles with different fiber orientation exist between the ribs.


1986 ◽  
Vol 60 (5) ◽  
pp. 1692-1699 ◽  
Author(s):  
A. De Troyer ◽  
V. Ninane

It is traditionally considered that the difference in orientation of the muscle fibers makes the external intercostals elevate the ribs and the internal interosseous intercostals lower the ribs during breathing. This traditional view, however, has recently been challenged by the observation that the external and internal interosseous intercostals, when contracting alone in a single interspace, have a similar effect on the ribs into which they insert. This view has also been challenged by the observation that the external and internal intercostals in a given interspace often change their length in the same direction during breathing. In an attempt to clarify the respiratory function of these muscles, we studied eight supine lightly anesthetized dogs during quiet breathing and during static inspiratory efforts. In each animal electromyographic (EMG) recordings from the external and internal interosseous intercostals were obtained in all interspaces from the second to the eighth, and selective denervations were systematically performed to ensure with complete certainty the origin of the recorded EMG activities. The external intercostals were only activated in phase with inspiration, whereas the internal interosseous intercostals were only activated in phase with expiration. These phasic EMG activities, however, were generally small in magnitude, and the muscles were often silent. Indeed, activation of the externals was always confined to the upper portion of the rib cage, whereas activation of the internals was limited to the lower portion of the rib cage. Internal intercostal activation always occurred sequentially along a caudocephalic gradient. These observations are thus compatible with the traditional view of intercostal muscle action.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 61 (6) ◽  
pp. 2050-2059 ◽  
Author(s):  
J. T. Sharp ◽  
G. A. Beard ◽  
M. Sunga ◽  
T. W. Kim ◽  
A. Modh ◽  
...  

The configuration and motion of the bony rib cage were studied from lateral chest roentgenograms in 10 young normal subjects (YN), 12 elderly normal subjects, and 12 hyperinflated emphysematous patients [chronic obstructive pulmonary disease subjects (COPD), mean total lung capacity (TLC) 133% of predicted]. The acute angles formed by the fourth through seventh ribs with an axial reference plane were measured at residual volume, functional residual capacity, and TLC in both supine and standing positions and correlated with corresponding lung volumes. both rib angles (RA) and changes in RA with lung volume were greatest with the fourth rib and decreased progressively going down (caudad) the chest. At TLC the RA of upper ribs was significantly less in EN and significantly greater in COPD than in YN. RA′s were greater supine than standing. When RA information was used together with autopsy data on the angles formed by intercostal muscles with adjacent ribs, intercostal muscle lengths in hyperinflation could be calculated. Computed intercostal muscle length data suggested that hyperinflation should not be associated with degrees of intercostal muscle shortening or overstretching, that would interfere seriously with tension generation.


1986 ◽  
Vol 61 (2) ◽  
pp. 539-544 ◽  
Author(s):  
V. Ninane ◽  
M. Decramer ◽  
A. De Troyer

The purpose of the present studies was to assess the functional coupling between the parasternal intercostals and the triangularis sterni (transversus thoracis) muscles during resting breathing, and we measured the electrical activity and the respiratory changes in length of these two muscles in 13 supine anesthetized dogs. The changes in muscle length were defined relative to their respective in situ relaxation length (Lr). During inspiration, the parasternal intercostals were active and shortened below Lr, causing the triangularis sterni to be passively stretched above Lr. Shortly after the cessation of parasternal contraction, the triangularis sterni became active and shortened below Lr, and in nine animals this active shortening was associated with a forcible distension of the parasternal intercostals above Lr. Deactivation of the triangularis sterni at end expiration caused both muscles to return to their respective Lr. This pattern was essentially unchanged after supplemental anesthesia and bilateral phrenicotomy. We conclude that in dogs breathing quietly the length of the rib cage muscles during the expiratory pause is not passively determined as conventionally thought.


Sign in / Sign up

Export Citation Format

Share Document