Effect of maturation on the extrathoracic airway stability of infants
The influence of maturation on extrathoracic airway (ETA) stability during quiet sleep was determined in 13 normal preterm infants of 1.41 +/- 0.14 (SD) kg birth weight and 32 +/- 2 wk estimated gestational age. Studies began in the first week of life and were performed three times at weekly intervals. A drop in intraluminal pressure within the ETA was produced by external inspiratory flow-resistive loading (60 cmH2O.l-1 x s at 1 l/min); an increase in intrinsic resistance, indicating airway narrowing, was sought as a measure of ETA instability. Baseline total pulmonary resistance was not significantly different between weeks 1, 2, and 3 (88 +/- 35, 65 +/- 24, and 61 +/- 17 cmH2O.l-1 x s, respectively) but increased markedly above baseline with loading to 144 +/- 45 cmH2O.l-1.s during week 1 (P < 0.001), 89 +/- 28 cmH2O.l-1 x s at week 2 (P < 0.01), and 74 +/- 25 cmH2O.l-1 x s at week 3 (n = 10). The increment with loading was significantly greater during week 1 than during weeks 2 or 3 (P < 0.02). Similar studies were also done in seven full-term infants in the first week of life to evaluate the influence of gestational maturity on ETA stability. Despite a relatively greater drop in intraluminal pressure within the ETA of term vs. preterm infants with loading (P < 0.001), total pulmonary resistance failed to increase (68 +/- 21 to 71 +/- 32 cmH2O.l-1.s). These data reveal that ETA instability is present in preterm infants at birth and decreases with increasing postnatal age. Full-term neonates, by comparison, display markedly greater ETA stability in the immediate neonatal period.