Short-term growth hormone treatment does not increase muscle protein synthesis in experienced weight lifters

1993 ◽  
Vol 74 (6) ◽  
pp. 3073-3076 ◽  
Author(s):  
K. E. Yarasheski ◽  
J. J. Zachweija ◽  
T. J. Angelopoulos ◽  
D. M. Bier

The purpose of this study was to determine whether recombinant human growth hormone (GH) administration enhances muscle protein anabolism in experienced weight lifters. The fractional rate of skeletal muscle protein synthesis and the whole body rate of protein breakdown were determined during a constant intravenous infusion of [13C]leucine in 7 young (23 +/- 2 yr; 86.2 +/- 4.6 kg) healthy experienced male weight lifters before and at the end of 14 days of subcutaneous GH administration (40 microgram.kg-1 x day-1). GH administration increased fasting serum insulin-like growth factor-I (from 224 +/- 20 to 589 +/- 80 ng/ml, P = 0.002) but did not increase the fractional rate of muscle protein synthesis (from 0.034 +/- 0.004 to 0.034 +/- 0.002%/h) or reduce the rate of whole body protein breakdown (from 103 +/- 4 to 108 +/- 5 mumol.kg-1 x h-1). These findings suggest that short-term GH treatment does not increase the rate of muscle protein synthesis or reduce the rate of whole body protein breakdown, metabolic alterations that would promote muscle protein anabolism in experienced weight lifters attempting to further increase muscle mass.

1996 ◽  
Vol 270 (4) ◽  
pp. E627-E633 ◽  
Author(s):  
A. A. Ferrando ◽  
H. W. Lane ◽  
C. A. Stuart ◽  
J. Davis-Street ◽  
R. R. Wolfe

We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.


1988 ◽  
Vol 75 (4) ◽  
pp. 415-420 ◽  
Author(s):  
W. L. Morrison ◽  
J. N. A. Gibson ◽  
C. Scrimgeour ◽  
M. J. Rennie

1. We have investigated arteriovenous exchanges of tyrosine and 3-methylhistidine across leg tissue in the postabsorptive state as specific indicators of net protein balance and myofibrillar protein breakdown, respectively, in eight patients with emphysema and in 11 healthy controls. Whole-body protein turnover was measured using l-[1-13C]leucine. 2. Leg efflux of tyrosine was increased by 47% in emphysematous patients compared with normal control subjects, but 3-methylhistidine efflux was not significantly altered. 3. In emphysema, whole-body leucine flux was normal, whole-body leucine oxidation was increased, and whole-body protein synthesis was depressed. 4. These results indicate that the predominant mechanism of muscle wasting in emphysema is a fall in muscle protein synthesis, which is accompanied by an overall fall in whole-body protein turnover.


1996 ◽  
Vol 81 (5) ◽  
pp. 2034-2038 ◽  
Author(s):  
Kevin D. Tipton ◽  
Arny A. Ferrando ◽  
Bradley D. Williams ◽  
Robert R. Wolfe

Tipton, Kevin D., Arny A. Ferrando, Bradley D. Williams, and Robert R. Wolfe. Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise. J. Appl. Physiol. 81(5): 2034–2038, 1996.—There is little known about the responses of muscle protein metabolism in women to exercise. Furthermore, the effect of adding resistance training to an endurance training regimen on net protein anabolism has not been established in either men or women. The purpose of this study was to quantify the acute effects of combined swimming and resistance training on protein metabolism in female swimmers by the direct measurement of muscle protein synthesis and whole body protein degradation. Seven collegiate female swimmers were each studied on four separate occasions with a primed constant infusion of ring-[13C6]phenylalanine (Phe) to measure the fractional synthetic rate (FSR) of the posterior deltoid and whole body protein breakdown. Measurements were made over a 5-h period at rest and after each of three randomly ordered workouts: 1) 4,600 m of intense interval swimming (SW); 2) a whole body resistance-training workout with no swimming on that day (RW); and 3) swimming and resistance training combined (SR). Whole body protein breakdown was similar for all treatments (0.75 ± 0.04, 0.69 ± 0.03, 0.69 ± 0.02, and 0.71 ± 0.04 μmol ⋅ min−1 ⋅ kg−1for rest, RW, SW, and SR, respectively). The FSR of the posterior deltoid was significantly greater ( P< 0.05) after SR (0.082 ± 0.015%/h) than at rest (0.045 ± 0.006%/h). There was no significant difference in the FSR after RW (0.048 ± 0.004%/h) or SW (0.064 ± 0.008%/h) from rest or from SR. These data indicate that the combination of swimming and resistance exercise stimulates net muscle protein synthesis above resting levels in female swimmers.


1984 ◽  
Vol 4 (1) ◽  
pp. 83-91 ◽  
Author(s):  
P. W. Emery ◽  
N. J. Rothwell ◽  
M. J. Stock ◽  
P. D. Winter

Chronic treatment of rats with the β2-adrenergic agonists clenbuterol and fenoterol over 16–19 d raised energy intake, expenditure, and body weight gain but did not affect fat or energy deposition, and body protein gain was increased by 50 and 18%, respectively. Both drugs increased the protein content and mitochondrial GDP-binding capacity of brown adipose tissue. Clenbuterol did not affect plasma insulin, growth hormone, or triiodothyronine levels, although insulin levels were reduced by fenoterol. Both drugs caused hypertrophy of skeletal muscle (gastrocnemius), and muscle protein synthesis in vivo (fractional rate) was elevated by 34 and 26% in clenbuterol and fenoteroltreated rats, respectively.


2020 ◽  
Vol 112 (2) ◽  
pp. 303-317 ◽  
Author(s):  
Tyler A Churchward-Venne ◽  
Philippe J M Pinckaers ◽  
Joey S J Smeets ◽  
Milan W Betz ◽  
Joan M Senden ◽  
...  

ABSTRACT Background Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. Objectives We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. Methods In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. Results Protein intake resulted in ∼70%–74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: −0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg−1 · h−1, respectively; P &lt; 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein–derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P &lt; 0.001). Conclusions Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein–derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise. This trial was registered at trialregister.nl as NTR5111.


2005 ◽  
Vol 288 (4) ◽  
pp. E645-E653 ◽  
Author(s):  
René Koopman ◽  
Anton J. M. Wagenmakers ◽  
Ralph J. F. Manders ◽  
Antoine H. G. Zorenc ◽  
Joan M. G. Senden ◽  
...  

The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of l-[ ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 ± 19% and +77 ± 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial ( P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials ( P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 ± 0.006 vs. 0.061 ± 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 ± 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2457 ◽  
Author(s):  
Jess A. Gwin ◽  
David D. Church ◽  
Robert R. Wolfe ◽  
Arny A. Ferrando ◽  
Stefan M. Pasiakos

Protein intake recommendations to optimally stimulate muscle protein synthesis (MPS) are derived from dose-response studies examining the stimulatory effects of isolated intact proteins (e.g., whey, egg) on MPS in healthy individuals during energy balance. Those recommendations may not be adequate during periods of physiological stress, specifically the catabolic stress induced by energy deficit. Providing supplemental intact protein (20–25 g whey protein, 0.25–0.3 g protein/kg per meal) during strenuous military operations that elicit severe energy deficit does not stimulate MPS-associated anabolic signaling or attenuate lean mass loss. This occurs likely because a greater proportion of the dietary amino acids consumed are targeted for energy-yielding pathways, whole-body protein synthesis, and other whole-body essential amino acid (EAA)-requiring processes than the proportion targeted for MPS. Protein feeding formats that provide sufficient energy to offset whole-body energy and protein-requiring demands during energy deficit and leverage EAA content, digestion, and absorption kinetics may optimize MPS under these conditions. Understanding the effects of protein feeding format-driven alterations in EAA availability and subsequent changes in MPS and whole-body protein turnover is required to design feeding strategies that mitigate the catabolic effects of energy deficit. In this manuscript, we review the effects, advantages, disadvantages, and knowledge gaps pertaining to supplemental free-form EAA, intact protein, and protein-containing mixed meal ingestion on MPS. We discuss the fundamental role of whole-body protein balance and highlight the importance of comprehensively assessing whole-body and muscle protein kinetics when evaluating the anabolic potential of varying protein feeding formats during energy deficit.


1993 ◽  
Vol 139 (3) ◽  
pp. 395-401 ◽  
Author(s):  
R. M. Palmer ◽  
D. J. Flint ◽  
J. C. MacRae ◽  
F. E. Fairhurst ◽  
L. A. Bruce ◽  
...  

ABSTRACT Rats were injected twice daily for up to 10 days with GH or with a polyclonal antiserum to rat GH, commencing at 21–22 days of age. Administration of bovine or human GH (1 mg/day) improved whole body growth rates by 22% and 29% respectively. Plantaris muscle mass was also increased, by 7 and 14% respectively. Anti-GH injected twice daily resulted in a 7% decrease in body weight at 4 days and a 10% reduction by 10 days. Similar decreases were observed in the total protein content of plantaris and soleus muscles. The decrease in the fractional rate of protein synthesis was proportionately greater than the decline in protein content in plantaris muscle whereas in the soleus no change in the rate of protein synthesis was observed, suggesting that the effect on this muscle was due to an increase in the rate of protein degradation. Serum total IGF-I was unchanged by treatment with either GH or anti-GH while the amount of hepatic IGF-I mRNA was also unaffected by anti-GH injection. These data are consistent with a direct effect of GH or an effect mediated by an autocrine/paracrine mechanism of action on muscle but do not support a role for serum total IGF-I as an endocrine mediator of GH action. Journal of Endocrinology (1993) 139, 395–401


2008 ◽  
Vol 32 (4) ◽  
pp. 341
Author(s):  
Stéphanie Chevalier ◽  
Olasunkanmi A.J. Adegoke ◽  
Linda Wykes ◽  
José A. Morais ◽  
Réjeanne Gougeon ◽  
...  

1998 ◽  
Vol 275 (4) ◽  
pp. E577-E583 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Jeffrey J. Zachwieja ◽  
Jennifer Gischler ◽  
Jan Crowley ◽  
Mary M. Horgan ◽  
...  

Muscle protein wasting occurs in human immunodeficiency virus (HIV)-infected individuals and is often the initial indication of acquired immunodeficiency syndrome (AIDS). Little is known about the alterations in muscle protein metabolism that occur with HIV infection. Nine subjects with AIDS wasting (CD4 < 200/mm3), chronic stable opportunistic infections (OI), and ≥10% weight loss, fourteen HIV-infected men and one woman (CD4 > 200/mm3) without wasting or OI (asymptomatic), and six HIV-seronegative lean men (control) received a constant intravenous infusion of [1-13C]leucine (Leu) and [2-15N]glutamine (Gln). Plasma Leu and Gln rate of appearance (Ra), whole body Leu turnover, disposal and oxidation rates, and [13C]Leu incorporation rate into mixed muscle protein were assessed. Total body muscle mass/fat-free mass was greater in controls (53%) than in AIDS wasting (43%; P = 0.04). Fasting whole body proteolysis and synthesis rates were increased above control in the HIV+ asymptomatic group and in the AIDS-wasting group ( P = 0.009). Whole body Leu oxidation rate was greater in the HIV+ asymptomatic group than in the control and AIDS-wasting groups ( P < 0.05). Fasting mixed muscle protein synthesis rate was increased in the asymptomatic subjects (0.048%/h; P = 0.01) but was similar in AIDS-wasting and control subjects (0.035 vs. 0.037%/h). Plasma Gln Rawas increased in AIDS-wasting subjects but was similar in control and HIV+ asymptomatic subjects ( P < 0.001). These findings suggest that AIDS wasting results from 1) a preferential reduction in muscle protein, 2) a failure to sustain an elevated rate of mixed muscle protein synthesis while whole body protein synthesis is increased, and 3) a significant increase in Gln release into the circulation, probably from muscle. Several interesting explanations for the increased Gln Rain AIDS wasting exist.


Sign in / Sign up

Export Citation Format

Share Document