Effects of exercise and glycogen depletion on glyconeogenesis in muscle

1994 ◽  
Vol 76 (4) ◽  
pp. 1753-1758 ◽  
Author(s):  
A. Bonen ◽  
D. A. Homonko

In the present study, we investigated the hypotheses that 1) skeletal muscle glyconeogenesis will increase after exercise, 2) greater changes in glyconeogenesis will be observed after exercise in fast-twitch muscles than in slow-twitch muscles, and 3) glycogen repletion will reduce the rates of glyconeogenesis. Mouse soleus and extensor digitorum longus (EDL) glycogen depots were reduced to the same levels by treadmill exercise (60 min) or epinephrine injection (75 micrograms/100 g body wt ip). Untreated animals were used as controls. We were able to prevent glycogen repletion by incubating muscles in vitro with sorbitol (75 mM) and to increase glycogen concentrations in vitro by incubating muscles with glucose (75 mM). The experimental results showed that glyconeogenesis was increased by exercise (EDL, +51%; soleus, +82%) when glycogen levels were kept low. When glycogen depots were increased, the rate of glyconeogenesis was lowered in the exercised EDL (P < 0.05) but not in the soleus (P > 0.05). Reductions in muscle glycogen by epinephrine did not change the rate of glyconeogenesis in EDL, either when glycogen depots were kept low or were repleted (P > 0.05). In contrast, in the soleus, epinephrine-induced reductions in glycogen did stimulate glyconeogenesis (P < 0.05). Analyses in EDL showed that in nonexercised muscles glycogen concentrations were minimally effective in altering the rates of glyconeogenesis. A 30% decrement in glycogen increased glyconeogenesis by 5% in resting muscles, whereas the same decrement increased glyconeogenesis by 51% in exercised muscles.(ABSTRACT TRUNCATED AT 250 WORDS)

1994 ◽  
Vol 19 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Arend Bonen ◽  
Karl J. A. McCullagh

Skeletal muscle lactate transport was investigated in vitro in isolated fast-twitch (EDL) and slow-twitch soleus (Sol) skeletal muscles from control and exercised mice. Exercise (23 m/min, 8% grade) reduced muscle glycogen by 37% in EDL (p < 0.05) and by 35% in Sol muscles (p < 0.05). Lactate transport measurements (45 sec) were performed after 60 min of exercise in intact EDL and Sol muscles in vitro, at differing pH (6.5 and 7.4) and differing lactate concentrations (4 and 30 mM). Lactate transport was observed to be greater in Sol than in EDL (p < 0.05). In the exercised muscles there was a small but significant increase in lactate transport (p < 0.05). Lactate transport was greater when exogenous lactate concentrations were greater (p < 0.05) and more rapid at the lower pH (p < 0.05). These studies demonstrated that lactate transport was increased with exercise. Key words: soleus, EDL, treadmill exercise


1990 ◽  
Vol 258 (4) ◽  
pp. E693-E700 ◽  
Author(s):  
A. Bonen ◽  
J. C. McDermott ◽  
M. H. Tan

We examined the effects of selected hormones and pH on the rates of glyconeogenesis (L-[U-14C]-lactate----glycogen) and glycogenesis (D-[U-14C]glucose----glycogen) in mouse fast-twitch (FT) and slow-twitch muscles incubated in vitro (37 degrees C). Glyconeogenesis and glycogenesis increased linearly with increasing concentrations of lactate (5-20 mM) and glucose (2.5-10 mM), respectively, in both muscles. Glyconeogenesis was approximately three- to fourfold greater in the extensor digitorum longus (EDL) than in the soleus, whereas basal glycogenesis was twofold greater in the soleus muscle than in the EDL. Lactate accounted for up to 5% of the glycogen formed in the soleus and up to 32% in the EDL relative to the rates of glycogenesis (i.e., 5 mM glucose + 10 nM insulin) in each muscle. Corticosterone (10(-12)-10(-6) M) failed to alter glyconeogenesis, whereas this hormone reduced glycogenesis. Insulin (10 nM) markedly stimulated glycogenesis but failed to stimulate glyconeogenesis. The rates of both glycogenesis and glyconeogenesis were pH sensitive, with optimal rates at pH 6.5-7.0 in both muscles. Glyconeogenesis increased by 49% in the soleus and by 39% EDL at pH 6.5 compared with pH 7.4. Glycogenesis increased in the soleus (SOL) and EDL in the absence (SOL: +22%; EDL: +52%) and presence of insulin (SOL: +22%; EDL: +51%) at pH 6.5 when compared with pH 7.4. In additional experiments with the perfused rat hindquarter, rates of glyconeogenesis were shown to be highly correlated with proportion of FT muscle fibers in a muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 65 (4) ◽  
pp. 697-703 ◽  
Author(s):  
Roberto T. Sudo ◽  
Gisele Zapata ◽  
Guilherme Suarez-Kurtz

The characteristics of transient contractures elicited by rapid cooling of frog or mouse muscles perfused in vitro with solutions equilibrated with 0.5–2.0% halothane are reviewed. The data indicate that these halothane-cooling contractures are dose dependent and reproducible, and their amplitude is larger in muscles containing predominantly slow-twitch type fibers, such as the mouse soleus, than in muscles in which fast-twitch fibers predominate, such as the mouse extensor digitorum longus. The halothane-cooling contractures are potentiated in muscles exposed to succinylcholine. The effects of Ca2+-free solutions, of the local anesthetics procaine, procainamide, and lidocaine, and of the muscle relaxant dantrolene on the halothane-cooling contractures are consistent with the proposal that the halothane-cooling contractures result from synergistic effects of halothane and low temperature on Ca sequestration by the sarcoplasmic reticulum. Preliminary results from skinned rabbit muscle fibers support this proposal. The halothane concentrations required for the halothane-cooling contractures of isolated frog or mouse muscles are comparable with those observed in serum of patients during general anesthesia. Accordingly, fascicles dissected from muscle biopsies of patients under halothane anesthesia for programmed surgery develop large contractures when rapidly cooled. The amplitude of these halothane-cooling contractures declined with the time of perfusion of the muscle fascicles in vitro with halothane-free physiological solutions. It is suggested that the halothane-cooling contractures could be used as a simple experimental model for the investigation of the effects of halothane on Ca homeostasis and contractility in skeletal muscle and for study of drugs of potential use in the management of the contractures associated with the halothane-induced malignant hyperthermia syndrome. It is shown that salicylates, but not indomethacin or mefenamic acid, inhibit the halothane-cooling contractures.


1991 ◽  
Vol 261 (5) ◽  
pp. R1300-R1306 ◽  
Author(s):  
D. I. Finkelstein ◽  
P. Andrianakis ◽  
A. R. Luff ◽  
D. Walker

The influence of the thyroid gland on the functional and histochemical development of fast- and slow-twitch skeletal muscle of fetal sheep has been studied in euthyroid fetal sheep (n = 6) and athyroid fetuses (n = 4) surgically thyroid-ectomized at 70-75 days of gestation. Two fast-twitch muscles, the medial gastrocnemius and extensor digitorum longus, and the slow-twitch soleus muscle were studied at the fetal age of 140 days gestation. The athyroid fetuses had significantly slower twitch contraction and relaxation times in both the medial gastrocnemius and extensor digitorum longus muscles compared with the euthyroid fetuses. Twitch contraction and relaxation times of the soleus were not different in the two groups. Thyroidectomy resulted in an increase in the proportion of fast (type II) muscle fibers and myosin, as shown histochemically and by gel electrophoresis of heavy-chain myosins. These results indicate that the functional maturation of the fast-twitch muscles of sheep is influenced by the presence of an intact thyroid gland from at least 70 days of gestation. In contrast, the slow-twitch soleus muscle fiber diameter and twitch contraction and relaxation times were not different in the two groups.


1987 ◽  
Vol 65 (2) ◽  
pp. 272-273 ◽  
Author(s):  
Michael Chua ◽  
Angela F. Dulhunty

The action of the tranquilizer diazepam on rat skeletal muscle showed that relaxation of isometric twitches is controlled by different processes in extensor digitorum longus (fast-twitch) and soleus (slow-twitch) muscles. Diazepam caused an increase in the amplitude of twitches in fibres from both muscles but increased the twitch duration only in soleus. The amplitude of fused tetani were reduced in both muscles and the rate of relaxation after the tetanus slowed by as much as 34% when the amplitude of the tetanus was reduced by only 11%. The slower tetanic relaxation indicated that calcium uptake by the sarcoplasmic reticulum was slower than normal in slow- and fast-twitch fibres. We conclude therefore that calcium uptake by the sarcoplasmic reticulum is rate limiting for twitch relaxation in slow-twitch but not fast-twitch fibres and suggest that calcium binding to parvalbumin controls relaxation in the fast fibres.


1999 ◽  
Vol 340 (3) ◽  
pp. 657-669 ◽  
Author(s):  
Rosa I. VINER ◽  
Deborah A. FERRINGTON ◽  
Todd D. WILLIAMS ◽  
Diana J. BIGELOW ◽  
Christian SCHÖNEICH

The accumulation of covalently modified proteins is an important hallmark of biological aging, but relatively few studies have addressed the detailed molecular-chemical changes and processes responsible for the modification of specific protein targets. Recently, Narayanan et al. [Narayanan, Jones, Xu and Yu (1996) Am. J. Physiol. 271, C1032-C1040] reported that the effects of aging on skeletal-muscle function are muscle-specific, with a significant age-dependent change in ATP-supported Ca2+-uptake activity for slow-twitch but not for fast-twitch muscle. Here we have characterized in detail the age-dependent functional and chemical modifications of the rat skeletal-muscle sarcoplasmic-reticulum (SR) Ca2+-ATPase isoforms SERCA1 and SERCA2a from fast-twitch and slow-twitch muscle respectively. We find a significant age-dependent loss in the Ca2+-ATPase activity (26% relative to Ca2+-ATPase content) and Ca2+-uptake rate specifically in SR isolated from predominantly slow-twitch, but not from fast-twitch, muscles. Western immunoblotting and amino acid analysis demonstrate that, selectively, the SERCA2a isoform progressively accumulates a significant amount of nitrotyrosine with age (≈ 3.5±0.7 mol/mol of SR Ca2+-ATPase). Both Ca2+-ATPase isoforms suffer an age-dependent loss of reduced cysteine which is, however, functionally insignificant. In vitro, the incubation of fast- and slow-twitch muscle SR with peroxynitrite (ONOO-) (but not NO/O2) results in the selective nitration only of the SERCA2a, suggesting that ONOO- may be the source of the nitrating agent in vivo. A correlation of the SR Ca2+-ATPase activity and covalent protein modifications in vitro and in vivo suggests that tyrosine nitration may affect the Ca2+-ATPase activity. By means of partial and complete proteolytic digestion of purified SERCA2a with trypsin or Staphylococcus aureus V8 protease, followed by Western-blot, amino acid and HPLC-electrospray-MS (ESI-MS) analysis, we localized a large part of the age-dependent tyrosine nitration to the sequence Tyr294-Tyr295 in the M4-M8 transmembrane domain of the SERCA2a, close to sites essential for Ca2+ translocation.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
M. Zimowska ◽  
A. Duchesnay ◽  
P. Dragun ◽  
A. Oberbek ◽  
J. Moraczewski ◽  
...  

When injured by crushing, the repair of the slow-twitch soleus rat muscle, unlike the fast-twitch EDL, is associated with fibrosis. As TGFβ1, whose activity can be controlled by glycosaminoglycans (GAG), plays a major role in fibrosis, we hypothesized that levels of TGFβ1 and GAG contents could account for this differential quality of regeneration. Here we show that the regeneration of the soleus was accompanied by elevated and more sustained TGFβ1 level than in the EDL. Neutralization of TGFβ1 effects by antibodies to TGFβ1 or its receptor TGFβ-R1 improved muscle repair, especially of the soleus muscle, increased in vitro growth of myoblasts, and accelerated their differentiation. These processes were accompanied by alterations of GAG contents. These results indicate that the control of TGFβ1 activity is important to improve regeneration of injured muscle and accelerate myoblast differentiation, in part through changes in GAG composition of muscle cell environment.


1987 ◽  
Vol 62 (3) ◽  
pp. 1250-1254 ◽  
Author(s):  
P. A. Ivey ◽  
G. A. Gaesser

Male and female Wistar rats were run for 5 min at 1.7 mph at a 17% grade to determine whether a sex difference exists in the rate of glycogen resynthesis during recovery in fast-twitch red muscle, fast-twitch white muscle, and liver. Rats were killed at one of three time points: immediately after the exercise bout, and at 1 or 4 h later. Males had significantly higher resting muscle glycogen levels (P less than 0.05). Exercise resulted in significant glycogen depletion in both sexes (P less than 0.01). Males utilized approximately 50% more glycogen during the exercise bout than females (P less than 0.05). During the food-restricted 4-h recovery period, muscle glycogen was repleted significantly during the 1st h (P less than 0.05). Liver glycogen was not depleted as a result of the exercise bout, but fell during the first h of recovery (P less than 0.05) and remained low during the subsequent 3 h. The greater glycogen utilization in red and white fast-twitch muscle during exercise by males could represent a true sex difference but could also be attributable in part to the males having performed more work as a result of 20% greater body mass. We conclude that no sex difference was observed in the rates of muscle glycogen repletion after exercise or in liver glycogen metabolism during and after exercise, and rapid postexercise muscle glycogen repletion occurred at a time of accelerated liver glycogen depletion.


1995 ◽  
Vol 73 (6) ◽  
pp. 736-741 ◽  
Author(s):  
C. L. Murrant ◽  
J. K. Barclay

We tested the hypothesis that endothelin and nitric oxide (NO) alter the force developed by fast-twitch and slow-twitch mammalian skeletal muscle, using a mouse skeletal muscle preparation trimmed to approximately 50% of the original diameter to decrease diffusion distances. We suspended trimmed soleus (SOL) and extensor digitorum longus (EDL) muscles in Krebs–Henseleit buffer (27 °C; pH 7.4) gassed with 95% O2 – 5% CO2. Muscles were stimulated once every 90 s for 500 ms at 50 Hz for SOL and 100 Hz for EDL. The force developed by trimmed SOL was 223.8 ± 9.1 mN/mm2 and by EDL was 247.3 ± 9.4 mN/mm2. Endothelin 1 (ET-1) had no effect on EDL but significantly accelerated the rate of decrease of developed force of SOL at concentrations of 10−10 mol/L and higher within 10 contractions. When ET-1 was removed, force returned toward control value. Endothelin 3 (ET-3) had no effect on either muscle. S-Nitroso-N-acetylpenicillamine (SNAP), a source of NO, increased developed force over time in both muscles, with a threshold of 10−6 mol/L. The effect was evident within 5 contractions in both muscles. Force remained elevated above control values after the removal of SNAP. Thus ET-1 attenuated and NO amplified mammalian skeletal muscle function.Key words: soleus, extensor digitorum longus, tetanic contractions, endothelin 1, endothelin 3, S-nitroso-N-acetylpenicillamine.


2016 ◽  
Vol 311 (1) ◽  
pp. C35-C42 ◽  
Author(s):  
Hongyang Xu ◽  
Noni T. Frankenberg ◽  
Graham D. Lamb ◽  
Paul R. Gooley ◽  
David I. Stapleton ◽  
...  

The 5′-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document