scholarly journals Paradoxical helium and sulfur hexafluoride single-breath washouts in short-term vs. sustained microgravity

1997 ◽  
Vol 82 (3) ◽  
pp. 859-865 ◽  
Author(s):  
Anne-Marie Lauzon ◽  
G. Kim Prisk ◽  
Ann R. Elliott ◽  
Sylvia Verbanck ◽  
Manuel Paiva ◽  
...  

Lauzon, Anne-Marie, G. Kim Prisk, Ann R. Elliott, Sylvia Verbanck, Manuel Paiva, and John B. West. Paradoxical helium and sulfur hexafluoride single-breath washouts in short-term vs. sustained microgravity. J. Appl. Physiol. 82(3): 859–865, 1997.—During single-breath washouts in normal gravity (1 G), the phase III slope of sulfur hexafluoride (SF6) is steeper than that of helium (He). Two mechanisms can account for this: 1) the higher diffusivity of He enhances its homogeneous distribution; and 2) the lower diffusivity of SF6 results in a more peripheral location of the diffusion front, where airway asymmetry is larger. These mechanisms were thought to be gravity independent. However, we showed during the Spacelab Life Sciences-2 spaceflight that in sustained microgravity (μG) the SF6-to-He slope difference is abolished. We repeated the protocol during short periods (27 s) of μG (parabolic flights). The subjects performed a vital-capacity inspiration and expiration of a gas containing 5% He-1.25% SF6-balance O2. As in sustained μG, the phase III slopes of He and SF6decreased. However, during short-term μG, the SF6-to-He slope difference increased from 0.17 ± 0.03%/l in 1 G to 0.29 ± 0.06%/l in μG, respectively. This is contrary to sustained μG, in which the SF6-to-He slope difference decreased from 0.25 ± 0.03%/l in 1 G to −0.01 ± 0.06%/l in μG. The increase in phase III slope difference in short-term μG was caused by a larger decrease of He phase III slope compared with that in sustained μG. This suggests that changes in peripheral gas mixing seen in sustained μG are mainly due to alterations in the diffusive-convective inhomogeneity of He that require >27 s of μG to occur. Changes in pulmonary blood volume distribution or cardiogenic mixing may explain the differences between the results found in short-term and sustained μG.

2004 ◽  
Vol 97 (3) ◽  
pp. 827-834 ◽  
Author(s):  
I. Mark Olfert ◽  
G. Kim Prisk

The phase III slope of sulfur hexafluoride (SF6) in a single-breath washout (SBW) is greater than that of helium (He) under normal gravity (i.e., 1G), thus resulting in a positive SF6-He slope difference. In microgravity (μG), SF6-He slope difference is smaller because of a greater fall in the phase III slope of SF6 than He. We sought to determine whether increasing thoracic fluid volume using 60° head-down tilt (HDT) in 1G would produce a similar effect to μG on phase III slopes of SF6 and He. Single-breath vital capacity (SBW) and multiple-breath washout (MBW) tests were performed before, during, and 60 min after 1 h of HDT. Compared with baseline (SF6 1.050 ± 0.182%/l, He 0.670 ± 0.172%/l), the SBW phase III slopes for both SF6 and He tended to decrease during HDT, reaching nadir at 30 min (SF6 0.609 ± 0.211%/l, He 0.248 ± 0.138%/l; P = 0.08 and P = 0.06, respectively). In contrast to μG, the magnitude of the phase III slope decrease was similar for both SF6 and He; therefore, no change in SF6-He slope difference was observed. MBW analysis revealed a decrease in normalized phase III slopes at all time points during HDT, for both SF6 ( P < 0.01) and He ( P < 0.01). This decrease was due to changes in the acinar, and not the conductive, component of the normalized phase III slope. These findings support the notion that changes in thoracic fluid volume alter ventilation distribution in the lung periphery but also demonstrate that the effect during HDT does not wholly mimic that observed in μG.


1999 ◽  
Vol 86 (5) ◽  
pp. 1594-1602 ◽  
Author(s):  
Brigitte Dutrieue ◽  
Anne-Marie Lauzon ◽  
Sylvia Verbanck ◽  
Ann R. Elliott ◽  
John B. West ◽  
...  

We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (μG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and μG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in μG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.


1996 ◽  
Vol 80 (4) ◽  
pp. 1126-1132 ◽  
Author(s):  
G. K. Prisk ◽  
A. M. Lauzon ◽  
S. Verbanck ◽  
A. R. Elliot ◽  
H. J. Guy ◽  
...  

We performed single-breath wash-in tests for He and SF6 in four subjects exposed to 14 days of microgravity (microG) during the Spacelab flight Spacelab Life Sciences-2. Subjects inspired a vital capacity breath of 5% He-1.25% SF6-balance O2 and then exhaled to residual volume at 0.5l/s. The tests were also performed with a 10-s breath hold at the end of inspiration. Measurements were also made with the subjects standing and supine in 1 G. Phase III slope was measured after the dead-space washout and before the onset of airway closure. In all subjects in 1 G, whether standing or supine, phase III slope for SF6 was significantly steeper than that for He. However, in microG, the slopes became the same. Furthermore, after breath holding in microG, the SF6 slopes were significantly flatter than those for He. On return to 1 G, the changes were reversed, and there was no difference between preflight and postflight values. Because most of the phase III slope reflects events occurring in the acinar regions of the lung, the results suggest that microG causes conformational changes in the acini or changes in cardiogenic mixing in the lung periphery, but in either case the mechanism is unclear.


1998 ◽  
Vol 84 (1) ◽  
pp. 244-252 ◽  
Author(s):  
G. Kim Prisk ◽  
Ann R. Elliott ◽  
Harold J. B. Guy ◽  
Sylvia Verbanck ◽  
Manuel Paiva ◽  
...  

Prisk, G. Kim, Ann R. Elliott, Harold J. B. Guy, Sylvia Verbanck, Manuel Paiva, and John B. West. Multiple-breath washin of helium and sulfur hexafluoride in sustained microgravity. J. Appl. Physiol. 84(1): 244–252, 1998.—We performed multiple-breath washouts of N2 and simultaneous washins of He and SF6 with fixed tidal volume (∼1,250 ml) and preinspiratory lung volume (approximately the subject’s functional residual capacity in the standing position) in four normal subjects (mean age 40 yr) standing and supine in normal gravity (1 G) and during exposure to sustained microgravity (μG). The primary objective was to examine the influence of diffusive processes on the residual, nongravitational ventilatory inhomogeneity in the lung in μG. We calculated several indexes of convective ventilatory inhomogeneity from each gas species. A normal degree of ventilatory inhomogeneity was seen in the standing position at 1 G that was largely unaltered in the supine position. When we compared the standing position in 1 G with μG, there were reductions in phase III slope in all gases, consistent with a reduction in convection-dependent inhomogeneity in the lung in μG, although considerable convective inhomogeneity persisted in μG. The reductions in the indexes of convection-dependent inhomogeneity were greater for He than for SF6, suggesting that the distances between remaining nonuniformly ventilated compartments in μG were short enough for diffusion of He to be an effective mechanism to reduce gas concentration differences between them.


2001 ◽  
Vol 90 (4) ◽  
pp. 1415-1423 ◽  
Author(s):  
M. J. Rodríguez-Nieto ◽  
G. Peces-Barba ◽  
N. González Mangado ◽  
S. Verbanck ◽  
M. Paiva

Vital capacity single-breath washouts using 90% O2-5% He-5% SF6 as a test gas mixture were performed with subjects sitting on a stool (upright) or recumbent on a stretcher (prone, supine, lateral left, lateral right, with or without rotation at end of inhalation). On the basis of the combinations of supine and prone maneuvers, gravity-dependent contributions to N2 phase III slope and N2 phase IV height in the supine posture were estimated at 18% and 68%, respectively. Whereas both He and SF6 slope decreased from supine to prone, the SF6-He slope difference actually increased ( P = 0.015). N2 phase III slopes, phase IV heights, and cardiogenic oscillations were smallest in the prone posture, and we observed similarities between the modifications of He and SF6 slopes from upright to prone and from upright to short-term microgravity. These results suggest that phase III slope is partially due to emptying patterns of small units with different ventilation-to-volume ratios, corresponding to acini or groups of acini. Of all body postures under study, the prone position most reduces the inhomogeneities of ventilation during a vital capacity maneuver at both inter- and intraregional levels.


1984 ◽  
Vol 56 (1) ◽  
pp. 52-56 ◽  
Author(s):  
T. S. Hurst ◽  
B. L. Graham ◽  
D. J. Cotton

We studied 10 symptom-free lifetime non-smokers and 17 smokers all with normal pulmonary function studies. All subjects performed single-breath N2 washout tests by either exhaling slowly (“slow maneuver”) from end inspiration (EI) to residual volume (RV) or exhaling maximally (“fast maneuver”) from EI to RV. After either maneuver, subjects then slowly inhaled 100% O2 to total lung capacity (TLC) and without breath holding, exhaled slowly back to RV. In the nonsmokers seated upright phase III slope of single-breath N2 test (delta N2/l) was lower (P less than 0.01) for the fast vs. the slow maneuver, but this difference disappeared when the subjects repeated the maneuvers in the supine position. In contrast, delta N2/l was higher for the fast vs. the slow maneuver (P less than 0.01) in smokers seated upright. For the slow maneuver, delta N2/l was similar between smokers and nonsmokers but for the fast maneuvers delta N2/l was higher in smokers than nonsmokers (P less than 0.01). We suggest that the fast exhalation to RV decreases delta N2/l in normal subjects by decreasing apex-to-base differences in regional ratio of RV to TLC (RV/TLC) but increases delta N2/l in smokers, because regional RV/TLC increases distal to sites of small airways obstruction when the expiratory flow rate is increased.


2002 ◽  
Vol 92 (3) ◽  
pp. 1232-1238 ◽  
Author(s):  
Christopher N. Mills ◽  
Chantal Darquenne ◽  
G. Kim Prisk

We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 ± 11% (mean ± SE, P < 0.05) and phase IV height increased 25 ± 11% ( P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-μm-particle bolus inhalations to penetration volumes (Vp) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all Vp, changing by 11.6 ml at Vp = 150 ml ( P < 0.05) and 38.4 ml at Vp = 1,200 ml ( P < 0.05). MS and phase III slope changes correlated positively at deeper Vp. Deposition did not change at any Vp, suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Elizabeth Jauhar Cardoso Bessa ◽  
Felipe de Miranda Carbonieri Ribeiro ◽  
Geraldo da Rocha Castelar Pinheiro ◽  
Agnaldo José Lopes

Abstract Objective There has been growing interest in studying small airway disease through measures of ventilation distribution, thanks to the resurgence of the nitrogen single-breath washout (N2SBW) test. Therefore, this study evaluated the contribution of the N2SBW test to the detection of pulmonary involvement in patients with rheumatoid arthritis (RA). Results Twenty-one patients with RA underwent clinical evaluation, pulmonary function tests (PFTs), including the N2SBW test, and computed tomography (CT). The main tomographic findings were air trapping and bronchiectasis (57.1% and 23.8% of cases, respectively). According to the phase III slope of the N2SBW (phase III slope), 11 and 10 patients had values < 120% predicted and > 120% predicted, respectively. Five patients with limited involvement on CT had a phase III slope > 120%. The residual volume/total lung capacity ratio was significantly different between patients with phase III slopes < 120% and > 120% (P = 0.024). Additionally, rheumatoid factor positivity was higher in patients with a phase III slope > 120% (P = 0.021). In patients with RA and airway disease on CT, the N2SBW test detects inhomogeneity in the ventilation distribution in approximately half of the cases, even in those with normal conventional PFT results.


1994 ◽  
Vol 76 (4) ◽  
pp. 1719-1729 ◽  
Author(s):  
H. J. Guy ◽  
G. K. Prisk ◽  
A. R. Elliott ◽  
R. A. Deutschman ◽  
J. B. West

Gravity is known to cause inhomogeneity of ventilation. Nongravitational factors are also recognized, but their relative contribution is not understood. We therefore studied ventilatory inhomogeneity during sustained microgravity during the 9-day flight of Spacelab SLS-1. All seven crew members performed single-breath nitrogen washouts. They inspired a vital capacity breath of 100% oxygen with a bolus of argon at the start of inspiration, and the inspiratory and expiratory flow rates were controlled at 0.5 l/s. Control measurements in normal gravity (1 G) were made pre- and postflight in the standing and supine position. Compared with the standing 1-G measurements, there was a marked decrease in ventilatory inhomogeneity during microgravity, as evidenced by the significant reductions in cardiogenic oscillations, slope of phase III, and height of phase IV for nitrogen and argon. However, argon phase IV volume was not reduced, and considerable ventilatory inhomogeneity remained. For example, the heights of the cardiogenic oscillations during microgravity for nitrogen and argon were 44 and 24%, respectively, of their values at 1 G, whereas the slopes of phase III for nitrogen and argon were 78 and 29%, respectively, of those at 1 G. The presence of a phase IV in microgravity is strong evidence that airway closure still occurs in the absence of gravity. The results were qualitatively similar to those found previously during short periods of 0 G in parabolic flight.


2013 ◽  
Vol 189 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Masashi Mikamo ◽  
Toshihiro Shirai ◽  
Kazutaka Mori ◽  
Yuichiro Shishido ◽  
Takefumi Akita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document