Rib cage mechanics during quiet breathing and exercise in humans

1997 ◽  
Vol 83 (4) ◽  
pp. 1242-1255 ◽  
Author(s):  
C. M. Kenyon ◽  
S. J. Cala ◽  
S. Yan ◽  
A. Aliverti ◽  
G. Scano ◽  
...  

Kenyon, C. M., S. J. Cala, S. Yan, A. Aliverti, G. Scano, R. Duranti, A. Pedotti, and Peter T. Macklem. Rib cage mechanics during quiet breathing and exercise in humans. J. Appl. Physiol. 83(4): 1242–1255, 1997.—During exercise, large pleural, abdominal, and transdiaphragmatic pressure swings might produce substantial rib cage (RC) distortions. We used a three-compartment chest wall model ( J. Appl. Physiol. 72: 1338–1347, 1992) to measure distortions of lung- and diaphragm-apposed RC compartments (RCp and RCa) along with pleural and abdominal pressures in five normal men. RCp and RCa volumes were calculated from three-dimensional locations of 86 markers on the chest wall, and the undistorted (relaxation) RC configuration was measured. Compliances of RCp and RCa measured during phrenic stimulation against a closed airway were 20 and 0%, respectively, of their values during relaxation. There was marked RC distortion. Thus nonuniform distribution of pressures distorts the RC and markedly stiffens it. However, during steady-state ergometer exercise at 0, 30, 50, and 70% of maximum workload, RC distortions were small because of a coordinated action of respiratory muscles, so that net pressures acting on RCp and RCa were nearly the same throughout the respiratory cycle. This maximizes RC compliance and minimizes the work of RC displacement. During quiet breathing, plots of RCa volume vs. abdominal pressure were to the right of the relaxation curve, indicating an expiratory action on RCa. We attribute this to passive stretching of abdominal muscles, which more than counterbalances the insertional component of transdiaphragmatic pressure.

1985 ◽  
Vol 58 (5) ◽  
pp. 1646-1653 ◽  
Author(s):  
E. R. Ringel ◽  
S. H. Loring ◽  
J. Mead ◽  
R. H. Ingram

We studied six (1 naive and 5 experienced) subjects breathing with added inspiratory resistive loads while we recorded chest wall motion (anteroposterior rib cage, anteroposterior abdomen, and lateral rib cage) and tidal volumes. In the five experienced subjects, transdiaphragmatic and pleural pressures, and electromyographs of the sternocleidomastoid and abdominal muscles were also measured. Subjects inspired against the resistor spontaneously and then with specific instructions to reach a target pleural or transdiaphragmatic pressure or to maximize selected electromyographic activities. Depending on the instructions, a wide variety of patterns of inspiratory motion resulted. Although the forces leading to a more elliptical or circular configuration of the chest wall can be identified, it is difficult to analyze or predict the configurational results based on insertional and pressure-related contributions of a few individual respiratory muscles. Although overall chest wall respiratory motion cannot be readily inferred from the electromyographic and pressure data we recorded, it is clear that responses to loading can vary substantially within and between individuals. Undoubtedly, the underlying mechanism for the distortional changes with loading are complex and perhaps many are behavioral rather than automatic and/or compensatory.


1992 ◽  
Vol 72 (4) ◽  
pp. 1338-1347 ◽  
Author(s):  
M. E. Ward ◽  
J. W. Ward ◽  
P. T. Macklem

We present a model of chest wall mechanics that extends the model described previously by Macklem et al. (J. Appl. Physiol. 55: 547–557, 1983) and incorporates a two-compartment rib cage. We divide the rib cage into that apposed to the lung (RCpul) and that apposed to the diaphragm (RCab). We apply this model to determine rib cage distortability, the mechanical coupling between RCpul and RCab, the contribution of the rib cage muscles to the pressure change during spontaneous inspiration (Prcm), and the insertional component of transdiaphragmatic pressure in humans. We define distortability as the relationship between distortion and transdiaphragmatic pressure (Pdi) and mechanical coupling as the relationship between rib cage distortion and the pressure acting to restore the rib cage to its relaxed configuration (Plink), as assessed during bilateral transcutaneous phrenic nerve stimulation. Prcm was calculated at end inspiration as the component of the pressure displacing RCpul not accounted for by Plink or pleural pressure. Prcm and Plink were approximately equal during quiet breathing, contributing 3.7 and 3.3 cmH2O on average during breaths associated with a change in Pdi of 3.9 cmH2O. The insertional component of Pdi was measured as the pressure acting on RCab not accounted for by the change in abdominal pressure during an inspiration without rib cage distortion and was 40 +/- 12% (SD) of total Pdi. We conclude that there is substantial resistance of the human rib cage to distortion, that, along with rib cage muscles, contributes importantly to the fall in pleural pressure over the costal surface of the lung.


1997 ◽  
Vol 83 (4) ◽  
pp. 1256-1269 ◽  
Author(s):  
A. Aliverti ◽  
S. J. Cala ◽  
R. Duranti ◽  
G. Ferrigno ◽  
C. M. Kenyon ◽  
...  

Aliverti, A., S. J. Cala, R. Duranti, G. Ferrigno, C. M. Kenyon, A. Pedotti, G. Scano, P. Sliwinski, Peter T. Macklem, and S. Yan. Human respiratory muscle actions and control during exercise. J. Appl. Physiol. 83(4): 1256–1269, 1997.—We measured pressures and power of diaphragm, rib cage, and abdominal muscles during quiet breathing (QB) and exercise at 0, 30, 50, and 70% maximum workload (W˙max) in five men. By three-dimensional tracking of 86 chest wall markers, we calculated the volumes of lung- and diaphragm-apposed rib cage compartments (Vrc,p and Vrc,a, respectively) and the abdomen (Vab). End-inspiratory lung volume increased with percentage of W˙max as a result of an increase in Vrc,p and Vrc,a. End-expiratory lung volume decreased as a result of a decrease in Vab. ΔVrc,a/ΔVab was constant and independent ofW˙max. Thus we used ΔVab/time as an index of diaphragm velocity of shortening. From QB to 70%W˙max, diaphragmatic pressure (Pdi) increased ∼2-fold, diaphragm velocity of shortening 6.5-fold, and diaphragm workload 13-fold. Abdominal muscle pressure was ∼0 during QB but was equal to and 180° out of phase with rib cage muscle pressure at all percent W˙max. Rib cage muscle pressure and abdominal muscle pressure were greater than Pdi, but the ratios of these pressures were constant. There was a gradual inspiratory relaxation of abdominal muscles, causing abdominal pressure to fall, which minimized Pdi and decreased the expiratory action of the abdominal muscles on Vrc,a gradually, minimizing rib cage distortions. We conclude that from QB to 0% W˙max there is a switch in respiratory muscle control, with immediate recruitment of rib cage and abdominal muscles. Thereafter, a simple mechanism that increases drive equally to all three muscle groups, with drive to abdominal and rib cage muscles 180° out of phase, allows the diaphragm to contract quasi-isotonically and act as a flow generator, while rib cage and abdominal muscles develop the pressures to displace the rib cage and abdomen, respectively. This acts to equalize the pressures acting on both rib cage compartments, minimizing rib cage distortion .


1978 ◽  
Vol 44 (2) ◽  
pp. 200-208 ◽  
Author(s):  
P. T. Macklem ◽  
D. Gross ◽  
G. A. Grassino ◽  
C. Roussos

We tested the hypothesis that the inspiratory pressure swings across the rib-cage pathway are the sum of transdiaphragmatic pressure (Pdi) and the pressures developed by the intercostal/accessory muscles (Pic). If correct, Pic can only contribute to lowering pleural pressure (Ppl), to the extent that it lowers abdominal pressure (Pab). To test this we measured Pab and Ppl during during Mueller maneuvers in which deltaPab = 0. Because there was no outward displacement of the rib cage, Pic must have contributed to deltaPpl, as did Pdi. Under these conditions the total pressure developed by the inspiratory muscles across the rib-cage pathway was less than Pdi + Pic. Therefore, we rejected the hypothesis. A plot of Pab vs. Ppl during relaxation allows partitioning of the diaphragmatic and intercostal/accessory muscle contributions to inspiratory pressure swings. The analysis indicates that the diaphragm can act both as a fixator, preventing transmission of Ppl to the abdomen and as an agonist. When abdominal muscles remain relaxed it only assumes the latter role to the extent that Pab increases.


2019 ◽  
Vol 127 (6) ◽  
pp. 1640-1650 ◽  
Author(s):  
Antonella LoMauro ◽  
Andrea Aliverti ◽  
Peter Frykholm ◽  
Daniela Alberico ◽  
Nicola Persico ◽  
...  

A plethora of physiological and biochemical changes occur during normal pregnancy. The changes in the respiratory system have not been as well elucidated, in part because radioimaging is usually avoided during pregnancy. We aimed to use several noninvasive methods to characterize the adaptation of the respiratory system during the full course of pregnancy in preparation for childbirth. Eighteen otherwise healthy women (32.3 ± 2.8 yr) were recruited during early pregnancy. Spirometry, optoelectronic plethysmography, and ultrasonography were used to study changes in chest wall geometry, breathing pattern, lung and thoraco-abdominal volume variations, and diaphragmatic thickness in the first, second, and third trimesters. A group of nonpregnant women were used as control subjects. During the course of pregnancy, we observed a reorganization of rib cage geometry, in shape but not in volume. Despite the growing uterus, there was no lung restriction (forced vital capacity: 101 ± 15% predicted), but we did observe reduced rib cage expansion. Breathing frequency and diaphragmatic contribution to tidal volume and inspiratory capacity increased. Diaphragm thickness was maintained (1st trimester: 2.7 ± 0.8 mm, 3rd trimester: 2.5 ± 0.9 mm; P = 0.187), possibly indicating a conditioning effect to compensate for the effects of the growing uterus. We conclude that pregnancy preserved lung volumes, abdominal muscles, and the diaphragm at the expense of rib cage muscles. NEW & NOTEWORTHY Noninvasive analysis of the kinematics of the chest wall and the diaphragm during resting conditions in pregnant women revealed significant changes in the pattern of thoracoabdominal breathing across the trimesters. That is, concomitant with the progressive changes of chest wall shape, the diaphragm increased its contribution to both spontaneous and maximal breathing, maintaining its thickness despite its lengthening due to the growing uterus. These results suggest that during pregnancy the diaphragm is conditioned to optimize its active role provided during parturition.


2013 ◽  
Vol 114 (8) ◽  
pp. 1066-1075 ◽  
Author(s):  
Rita Priori ◽  
Andrea Aliverti ◽  
André L. Albuquerque ◽  
Marco Quaranta ◽  
Paul Albert ◽  
...  

Chronic obstructive pulmonary disease (COPD) patients often show asynchronous movement of the lower rib cage during spontaneous quiet breathing and exercise. We speculated that varying body position from seated to supine would influence rib cage asynchrony by changing the configuration of the respiratory muscles. Twenty-three severe COPD patients (forced expiratory volume in 1 s = 32.5 ± 7.0% predicted) and 12 healthy age-matched controls were studied. Measurements of the phase shift between upper and lower rib cage and between upper rib cage and abdomen were performed with opto-electronic plethysmography during quiet breathing in the seated and supine position. Changes in diaphragm zone of apposition were measured by ultrasounds. Control subjects showed no compartmental asynchronous movement, whether seated or supine. In 13 COPD patients, rib cage asynchrony was noticed in the seated posture. This asynchrony disappeared in the supine posture. In COPD, upper rib cage and abdomen were synchronous when seated, but a strong asynchrony was found in supine. The relationships between changes in diaphragm zone of apposition and volume variations of chest wall compartments supported these findings. Rib cage paradox was noticed in approximately one-half of the COPD patients while seated, but was not related to impaired diaphragm motion. In the supine posture, the rib cage paradox disappeared, suggesting that, in this posture, diaphragm mechanics improves. In conclusion, changing body position induces important differences in the chest wall behavior in COPD patients.


1988 ◽  
Vol 65 (2) ◽  
pp. 852-862 ◽  
Author(s):  
M. B. Hershenson ◽  
Y. Kikuchi ◽  
S. H. Loring

We hypothesized that during maximal respiratory efforts involving the simultaneous activation of two or more chest wall muscles (or muscle groups), differences in muscle strength require that the activity of the stronger muscle be submaximal to prevent changes in thoracoabdominal configuration. Furthermore we predicted that maximal respiratory pressures are limited by the strength of the weaker muscle involved. To test these hypotheses, we measured the pleural pressure, abdominal pressure (Pab), and transdiaphragmatic pressure (Pdi) generated during maximal inspiratory, open-glottis and closed-glottis expulsive, and combined inspiratory and expulsive maneuvers in four adults. We then determined the activation of the diaphragm and abdominal muscles during selected maximal respiratory maneuvers, using electromyography and phrenic nerve stimulation. In all subjects, the Pdi generated during maximal inspiratory efforts was significantly lower than the Pdi generated during open-glottis expulsive or combined efforts, suggesting that rib cage, not diaphragm, strength limits maximal inspiratory pressure. Similarly, at high lung volumes, the Pab generated during closed-glottis expulsive efforts was significantly greater than that generated during open-glottis efforts, suggesting that the latter pressure is limited by diaphragm, not abdominal muscle, strength. As predicted, diaphragm activation was submaximal during maximal inspiratory efforts, and abdominal muscle activation was submaximal during open-glottis expulsive efforts at midlung volume. Additionally, assisting the inspiratory muscles of the rib cage with negative body-surface pressure significantly increased maximal inspiratory pressure, whereas loading the rib cage muscles with rib cage compression decreased maximal inspiratory pressure. We conclude that activation of the chest wall muscles during static respiratory efforts is determined by the relative strengths and mechanical advantage of the muscles involved.


1991 ◽  
Vol 70 (2) ◽  
pp. 539-547 ◽  
Author(s):  
D. O. Warner ◽  
J. F. Brichant ◽  
E. L. Ritman ◽  
K. Rehder

To determine the relative contribution of rib cage and abdominal muscles to expiratory muscle activity during quiet breathing, we used lumbar epidural anesthesia in six pentobarbital sodium-anesthetized dogs lying supine to paralyze the abdominal muscles while leaving rib cage muscle motor function substantially intact. A high-speed X-ray scanner (Dynamic Spatial Reconstructor) provided three-dimensional images of the thorax. The contribution of expiratory muscle activity to tidal breathing was assessed by a comparison of chest wall configuration during relaxed apnea with that at end expiration. We found that expiratory muscle activity was responsible for approximately half of the changes in thoracic volume during inspiration. Paralysis of the abdominal muscles had little effect on the pattern of breathing, including the contribution of expiratory muscle activity to tidal breathing, in most dogs. We conclude that, although there is consistent phasic expiratory electrical activity in both the rib cage and the abdominal muscles of pentobarbital-anesthetized dogs lying supine, the muscles of the rib cage are mechanically the most important expiratory muscles during quiet breathing.


1988 ◽  
Vol 65 (5) ◽  
pp. 2207-2212 ◽  
Author(s):  
W. F. Urmey ◽  
A. De Troyer ◽  
K. B. Kelly ◽  
S. H. Loring

The zone of apposition of diaphragm to rib cage provides a theoretical mechanism that may, in part, contribute to rib cage expansion during inspiration. Increases in intra-abdominal pressure (Pab) that are generated by diaphragmatic contraction are indirectly applied to the inner rib cage wall in the zone of apposition. We explored this mechanism, with the expectation that pleural pressure in this zone (Pap) would increase during inspiration and that local transdiaphragmatic pressure in this zone (Pdiap) must be different from conventionally determined transdiaphragmatic pressure (Pdi) during inspiration. Direct measurements of Pap, as well as measurements of pleural pressure (Ppl) cephalad to the zone of apposition, were made during tidal inspiration, during phrenic stimulation, and during inspiratory efforts in anesthetized dogs. Pab and esophageal pressure (Pes) were measured simultaneously. By measuring Ppl's with cannulas placed through ribs, we found that Pap consistently increased during both maneuvers, whereas Ppl and Pes decreased. Whereas changes in Pdi of up to -19 cmH2O were measured, Pdiap never departed from zero by greater than -4.5 cmH2O. We conclude that there can be marked regional differences in Ppl and Pdi between the zone of apposition and regions cephalad to the zone. Our results support the concept of the zone of apposition as an anatomic region where Pab is transmitted to the interior surface of the lower rib cage.


1987 ◽  
Vol 63 (3) ◽  
pp. 951-961 ◽  
Author(s):  
D. R. Hillman ◽  
K. E. Finucane

The interaction of forces that produce chest wall motion and lung volume change is complex and incompletely understood. To aid understanding we have developed a simple model that allows prediction of the effect on chest wall motion of changes in applied forces. The model is a lever system on which the forces generated actively by the respiratory muscles and passively by impedances of rib cage, lungs, abdomen, and diaphragm act at fixed sites. A change in forces results in translational and/or rotational motion of the lever; motion represents volume change. The distribution and magnitude of passive relative to active forces determine the locus and degree of rotation and therefore the effect of an applied force on motion of the chest wall, allowing the interaction of diaphragm, rib cage, and abdomen to be modeled. Analysis of moments allow equations to be derived that express the effect on chest wall motion of the active component in terms of the passive components. These equations may be used to test the model by comparing predicted with empirical behavior. The model is simple, appears valid for a variety of respiratory maneuvers, is useful in interpreting relative motion of rib cage and abdomen and may be useful in quantifying the effective forces acting on the rib cage.


Sign in / Sign up

Export Citation Format

Share Document