scholarly journals Respiratory function in lambs after in utero treatment of lung hypoplasia by tracheal obstruction

1999 ◽  
Vol 87 (6) ◽  
pp. 2296-2304 ◽  
Author(s):  
M. G. Davey ◽  
S. B. Hooper ◽  
M. L. Tester ◽  
D. P. Johns ◽  
R. Harding

Tracheal obstruction (TO) stimulates growth of hypoplastic lungs in the fetus, but there is little knowledge of subsequent postnatal respiratory function. We have determined the effectiveness of TO in fetal sheep with existing lung hypoplasia in restoring postnatal respiratory function. Lung hypoplasia was induced by lung liquid drainage from 112 days of gestation to term (∼148 days). We used an untreated group (ULH), a treated group (TLH) in which the trachea was obstructed for 10 days, and a control group. ULH lambs died within 4 h of birth. TLH lambs were hypoxic for the first week and were hypercapic at 2 days. Pulmonary diffusing capacity, gas volumes, and respiratory compliances were not different between control and TLH lambs. Minute ventilation was not different between the two groups; however, tidal volumes were lower and respiratory frequencies were higher in TLH lambs than in controls for 2 wk after birth. We conclude that 10 days of TO in the presence of initial lung hypoplasia prevents death at birth and returns most aspects of pulmonary function to normal by 1–2 wk after birth.

2000 ◽  
Vol 278 (3) ◽  
pp. L453-L459 ◽  
Author(s):  
L. Nardo ◽  
I. R. Young ◽  
S. B. Hooper

Obstructing the fetal trachea is a potent stimulus for fetal lung growth, but little is known about the factors that regulate this process. Our aim was to determine the role of growth hormone (GH) in regulating the increase in lung growth induced by obstruction of the trachea in fetal sheep. Twenty chronically catheterized fetal sheep, nine of which were hypophysectomized, were divided into four experimental groups: 1) control group ( n = 4), 2) a group in which the fetal trachea was obstructed for 3 days (3-day obstructed; n = 6), 3) a 3-day obstructed group in which the pituitary was removed [hypophysectomized (HX)] and the fetus was given maintenance infusions of ACTH, thyroxine, and human GH (hGH; HX hGH 3-day obstructed; n = 5), and 4) a HX 3-day obstructed group in which the fetus was given maintenance infusions of ACTH and thyroxine ( n = 5). Tracheal obstruction significantly increased fetal lung liquid volumes from 37.2 ± 3.2 ml/kg in control fetuses to 75.6 ± 9.0 ml/kg in 3-day obstructed fetuses, and the presence or absence of GH did not affect this increase. Similarly, the presence or absence of GH did not affect the increase in lung weight or protein content induced by 3 days of tracheal obstruction. However, in the absence of GH, 3 days of tracheal obstruction failed to increase total lung DNA content above unobstructed control values (107.9 ± 5.3 and 94.1 ± 7.0 mg/kg for control and HX 3-day obstructed groups, respectively). In contrast, 3 days of tracheal obstruction increased total lung DNA content to a similar extent in fetuses with an intact pituitary and HX fetuses that received GH replacement (126.0 ± 4.4 and 126.7 ± 4.0 mg/kg for 3-day obstructed and HX hGH 3-day obstructed groups, respectively). These data indicate that the absence of GH either abolishes or delays the acceleration in cell division caused by an increase in fetal lung expansion.


1991 ◽  
Vol 70 (1) ◽  
pp. 293-299 ◽  
Author(s):  
K. A. Dickson ◽  
R. Harding

Oligohydramnios commonly leads to fetal lung hypoplasia, but the mechanisms are not fully understood. Our aim was to determine, in fetal sheep, the effects of prolonged oligohydramnios on the incidence and amplitude of tracheal pressure fluctuations associated with fetal breathing movements (FBM), on tracheal flow rate during periods of FBM (VtrFBM) and periods of apnea (Vtrapnea), on tracheal pressure relative to amniotic sac pressure, and on amniotic sac pressure relative to atmospheric pressure. In five sheep, oligohydramnios was induced by draining amniotic and allantoic fluids from 107 to 135 days of gestation (411.8 +/- 24.4 ml/day), resulting in fetal lung hypoplasia. In five control sheep, amniotic fluid volume was 732.3 +/- 94.4 ml. Oligohydramnios increased the incidence of FBM by 14% at 120 and 125 days and the amplitude of FBM by 30–34% at 120–130 days compared with controls. From 120 days onward, VtrFBM was 35–55% lower in experimental fetuses than in controls. Influx of lung liquid during FBM was 87% lower in experimental fetuses than in controls. Vtrapnea, tracheal pressure, and amniotic sac pressure were not significantly altered by oligohydramnios. Our tracheal flow rate data suggest that transient changes in lung liquid volume during periods of FBM and periods of apnea were diminished by oligohydramnios. We conclude that the primary factor in the etiology of oligohydramnios-induced lung hypoplasia is not an inhibition of FBM (as measured by tracheal pressure fluctuations) or a reduction in amniotic fluid pressure.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (4) ◽  
pp. L403-L409 ◽  
Author(s):  
S. B. Hooper ◽  
V. K. Han ◽  
R. Harding

Our aim was to determine the effect of short-term (7 days) alterations in fetal lung liquid volume on pulmonary DNA synthesis rates and insulin-like growth factor-II (IGF-II) mRNA levels. Fifteen chronically catheterized fetal sheep were divided into three groups. In one, the trachea was obstructed, in another lung liquid was drained by gravity, and the third group served as controls. After 7 days, [3H]thymidine was injected into each fetus and 8 h later fetal tissues were collected. Fetal lung-to-body weight ratios and total lung DNA contents were greatly increased in fetuses with tracheal obstruction compared with control fetuses, whereas the drainage of lung liquid did not affect these measurements. DNA synthesis rates in pulmonary tissue were significantly reduced from a mean control value of 153.3 +/- 25.1 disintegrations per minute (dpm)/microgram DNA to 57.2 +/- 8.6 dpm/microgram DNA by lung liquid drainage (P < 0.05) and were significantly increased to 236.0 +/- 24.0 dpm/microgram DNA by tracheal obstruction (P < 0.05). Following tracheal obstruction, lung IGF-II mRNA levels were increased to 177.0 +/- 18.2% (P < 0.05) of the mean value for control fetuses, whereas they were reduced to 56.1 +/- 7.1% of control in lung liquid-drained fetuses. We conclude that altering fetal lung expansion has a potent and rapid effect on pulmonary DNA synthesis and that this effect may, in part, be mediated by an alteration in IGF-II gene expression.


Author(s):  
David Niederseer ◽  
Roman Walser ◽  
Christian Schmied ◽  
Flemming Dela ◽  
Christoph Gräni ◽  
...  

Objectives: To investigate whether recreational alpine skiing in the elderly can improve cardio-pulmonary fitness. Design: Randomized controlled study with pre–post repeated measurements. Methods: A total of 48 elderly participants (60–76 years) were randomly assigned to either participate in a 12-week guided recreational skiing program (intervention group, IG, average of 28.5 ± 2.6 skiing days) or to continue a sedentary ski-free lifestyle (control group, CG). Cardio-pulmonary exercise testing (CPET) and pulmonary function testing were performed in both groups before (PRE) and after (POST) the intervention/control period to compare parameters PRE vs. POST CPET. Results: At baseline, IG and CG did not differ significantly with respect to CPET and pulmonary function parameters. At POST, several measures of maximal exercise capacity and breathing economy were significantly improved in IG as compared to CG: maximal oxygen capacity (IG: 33.8 ± 7.9; CG: 28.7 ± 5.9 mL/min/kg; p = 0.030), maximal carbon dioxide production (IG: 36.2 ± 7.7; CG: 31.8 ± 6.5 mL/min/kg; p = 0.05), maximal oxygen pulse (IG: 16.8 ± 4.2; CG: 13.2 ± 4 mL/heart beat; p = 0.010), maximal minute ventilation (IG: 96.8 ± 17.8; CG: 81.3 ± 21.9 l/min; p = 0.025), and maximal metabolic equivalent of task (METs, IG: 9.65 ± 2.26; CG: 8.19 ± 1.68 METs; p = 0.029). Except for oxygen pulse, these significant changes could also be observed at the anaerobic threshold. Maximal heart rate and pulmonary function parameters remained essentially unchanged. Conclusion: Regular recreational skiing improves cardio-pulmonary fitness along with breathing economy and thus can contribute to a heart-healthy lifestyle for the elderly.


Author(s):  
M.A. Bureau ◽  
P. Ngassam ◽  
B. Lemieux ◽  
A. Trias

SUMMARY:Pulmonary function tests were carried out on 20 patients with Friedreich's ataxia. The lung volume, diffusing capacity, flow rate, flowvolume curve, and blood gases were measured. In each patient the degree of scoliosis was measured and the pulmonary function tests were analyzed in relation to the scoliosis. A control group of 13 subjects with idiopathic scoliosis was used for comparison. In both groups, the degree of scoliosis was similar.


2021 ◽  
pp. 026921552110432
Author(s):  
Gökçe Yağmur Güneş Gencer ◽  
Öznur Yilmaz

Objectives: To investigate the effect of trunk training on trunk control, arm, and pulmonary function in children with Duchenne muscular dystrophy. Design: A randomised controlled trial. Settings: Neuromuscular diseases clinic of university hospital. Subjects: Twenty-six children with Duchenne muscular dystrophy aged 5–16 were included in the study. Intervention: Participants were randomly allocated into two groups. The study group ( N = 13) exercised with the trunk-oriented exercise program and the conventional exercise program, whereas the control group ( N = 13) underwent the conventional exercise program for eight weeks. Main measures: The primary outcomes were trunk control was assessed using the Trunk Control Measurement Scale, the arm function was assessed using Performance of Upper Limb, and respiratory function using the pulmonary function test. Data collection was conducted at baseline, and eighth week. The differences in trunk control scores, arm function scores, and respiratory function values before and after the training were calculated for the intergroup comparison. Results: The mean age of the participants was 11.6 (2.6) in the study group and 10.6 (3.4) in the control group. The changes between trunk control score, arm function score (total and distal level score), and respiratory function value (Forced Vital Capacity, Forced Expiratory Volume in one second, and Peak Expiratory Flow Volume percentage values) were compared and significant differences were found after eight week periods in the study and control groups. Conclusions: Trunk-oriented exercise program in Duchenne muscular dystrophy might be effective for trunk control, arm, and respiratory function.


2001 ◽  
Vol 281 (2) ◽  
pp. R381-R390 ◽  
Author(s):  
Andrew P. Harris ◽  
Sabah Helou ◽  
Christine A. Gleason ◽  
Richard J. Traystman ◽  
Raymond C. Koehler

The increase in cerebral blood flow (CBF) during hypoxia in fetal sheep at 0.6 gestation is less than the increase at 0.9 gestation when normalized for differences in baseline CBF and oxygen consumption. Nitric oxide (NO) synthase (NOS) catalytic activity increases threefold during this period of development. We tested the hypothesis that administration of the NOS inhibitor N ω-nitro-l-arginine methyl ester (l-NAME) decreases the CBF response to systemic hypoxia selectively at 0.9 gestation. We also tested whether any peripheral vasoconstriction during hypoxia is potentiated byl-NAME at 0.9 gestation. Administration ofl-NAME increased arterial blood pressure and decreased microsphere-determined CBF during normoxia in fetal sheep at both 0.6 and 0.9 gestation. With subsequent reduction of arterial oxygen content by ∼50%, the percent increase in forebrain CBF in a control group (57 ± 11%; ± SE) and l-NAME-treated group (51 ± 6%) was similar at 0.6 gestation. Likewise, at 0.9 gestation, the increase in CBF was similar in control (90 ± 25%) andl-NAME (80 ± 28%) groups. At 0.9 gestation,l-NAME treatment attenuated the increase in coronary blood flow and increased gastrointestinal vascular resistance during hypoxia. We conclude that NO exerts a basal vasodilatory influence in brain as early as 0.6 gestation in fetal sheep but is not an important mechanism for hypoxic vasodilation in brain at either 0.6 or 0.9 gestation. Thus the developmental increase in NOS catalytic capacity does not appear to be responsible for developmental increases in the CBF response to hypoxia during this period. In contrast, NO modulates the vascular response to hypoxia in heart and gastrointestinal tract.


2014 ◽  
Vol 43 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Lídia Aguiar Bezerra ◽  
Helton Fabrício de Melo ◽  
Ana Paula Garay ◽  
Victor Machado Reis ◽  
Felipe José Aidar ◽  
...  

Abstract Aging produces several respiratory limitations and reduces tolerance to physical efforts, sometimes leading to pulmonary diseases in the elderly. The literature draws attention to the possible benefits of Yoga practice among the elderly, presenting evidence for significant improvements in quality of life. It was hypothesized that yoga practice can improve respiratory function in the elderly. The effects of a yoga program on pulmonary volumes and respiratory muscle strength were verified in 36 elderly women divided into a yoga group [YG] (63.1 ± 13.3 years of age) and a control group (61.0 ± 6.9 years of age). Maximal inspiratory and expiratory pressure (MIP and MEP) were assessed by a manovacuometer and tidal volume (VT), vital capacity (VC) and minute ventilation (VE) were measured by a ventilometer. The program comprised 65 min sessions, 3 times/week during 12 weeks. The heart rate and respiratory rate decreased significantly in the YG (76-39 ± 8-03 vs. 74-61±10.26 bpm and 18.61 ± 3.15 vs. 16.72 ± 3.12 resp/min, respectively). In the YG, VT and VE increased significantly (0.55 ± 0.22 vs. 0.64 ± 0.2 ml and 9.19 ± 2.39 vs. 10.05 ± 2.11 ml, respectively), as well as VC (1.48 ± 0.45 vs. 2.03 ± 0.72 ml). Improvements were also found in MIP and MEP in the YG (62.17 ± 14.77 vs. 73.06 ± 20.16 cmH2O and 80.56 ± 23.94 vs. 86.39 ± 20.16 cmH2O, respectively). It was concluded that a 12-week yoga program significantly improves pulmonary function of aged women.


1997 ◽  
Vol 273 (6) ◽  
pp. L1126-L1131 ◽  
Author(s):  
Rochelle E. Boland ◽  
Laura Nardo ◽  
Stuart B. Hooper

We have investigated whether cortisol pretreatment of sheep fetuses will result in a greater liquid accumulation within the lung and a greater lung growth response to obstruction of the fetal trachea. Chronically catheterized fetal sheep received either 1) a cortisol infusion at an increasing dose (1.5–4.0 mg/day) from days 118 to 127 of gestation; the fetal trachea was then obstructed from days 128 to 131 of gestation ( n = 4); 2) a saline infusion from days 118 to 127 of gestation; the fetal trachea was then obstructed from days 128 to 131 of gestation ( n = 4); or 3) a saline infusion from days 118 to 127 of gestation with no period of tracheal obstruction (control; n = 4). Fetal tracheal pressures were measured from days 128 to 131 of gestation, whereas lung liquid secretion rates and volumes were measured on days 118, 128, and 131 of gestation. On day 131 of gestation, all fetuses were given an intravenous injection of [3H]thymidine and were killed 8 h later. Cortisol pretreatment increased the volume of liquid that accumulated within the fetal lung from 69.5 ± 4.1 to 96.1 ± 14.1 ml/kg after 3 days of tracheal obstruction. Similarly, cortisol pretreatment significantly enhanced the increase in lung DNA content from 257.4 ± 11.0 to 309.1 ± 16.3 mg/kg after 3 days of tracheal obstruction. We conclude that pretreatment of fetuses with cortisol increases the volume of liquid that accumulates after tracheal obstruction and, as a result, increases the fetal lung growth response to tracheal obstruction.


Sign in / Sign up

Export Citation Format

Share Document