Exposure to febrile temperature modifies endothelial cell response to tumor necrosis factor-α

2001 ◽  
Vol 90 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Jeffrey D. Hasday ◽  
Douglas Bannerman ◽  
Sirhan Sakarya ◽  
Alan S. Cross ◽  
Ishwar S. Singh ◽  
...  

Fever is an important regulator of inflammation that modifies expression and bioactivity of cytokines, including tumor necrosis factor (TNF)-α. Pulmonary vascular endothelium is an important target of TNF-α during the systemic inflammatory response. In this study, we analyzed the effect of a febrile range temperature (39.5°C) on TNF-α-stimulated changes in endothelial barrier function, capacity for neutrophil binding and transendothelial migration (TEM), and cytokine secretion in human pulmonary artery endothelial cells (EC). Permeability for [14C]BSA tracer was increased by treatment with TNF-α, and this effect was augmented by incubating EC at 39.5°C. Treating EC with 2.5 U/ml TNF-α stimulated an increase in subsequent neutrophil adherence and TEM. Incubating EC at 39.5°C caused a 30% increase in TEM but did not modify the enhancement of neutrophil adherence or TEM by TNF-α treatment. Analysis of cytokine expression in EC cultures exposed to TNF-α at either 37° or 39.5°C revealed three patterns of temperature and TNF-α responsiveness. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin (IL)-8 were not detectable in untreated EC but were increased after TNF-α exposure, and this increase was enhanced at 39.5°C. IL-6 expression was also increased with TNF-α exposure, but IL-6 expression was lower in 39.5°C EC cultures. Transforming growth factor-β1was constitutively expressed, and its expression was not influenced either by TNF-α or exposure to 39.5°C. These data demonstrate that clinically relevant shifts in body temperature might cause important changes in the effects of proinflammatory cytokines on the endothelium.

Blood ◽  
2001 ◽  
Vol 98 (8) ◽  
pp. 2389-2395 ◽  
Author(s):  
Ester Carballo ◽  
Perry J. Blackshear

Abstract Tristetraprolin (TTP) is a member of the CCCH tandem zinc-finger class of proteins. It can bind to and destabilize mRNAs encoding tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, mice deficient in TTP develop a complex syndrome characterized by cachexia, myeloid hyperplasia, and joint and skin inflammation. Studies using anti–TNF-α neutralizing antibodies demonstrated that this syndrome, at least in part, is a consequence of the excess production of TNF-α in the absence of TTP. To evaluate the role played by each TNF-α receptor in the pathogenesis of this syndrome, mice were generated that were deficient in TTP and either or both of the known TNF-α receptors (TNFRs), type 1 (TNFR1) and type 2 (TNFR2). Mice deficient in TTP and TNFR1, or in TTP and both receptors, were protected from developing the TNF-α–induced cachexia and inflammation. In contrast, mice deficient in TNFR2 were more severely affected than mice deficient in TTP alone, suggesting that TNFR2 might play a protective role in the development of the syndrome. In cultured cells derived from these mice, apparent cooperation between the TNFRs was required to achieve normal TNF-α–induced expression of TTP, TNF-α, and GM-CSF mRNAs. Finally, the results showed that TNFR1 plays an important role in mediating TNF-α–induced changes in TNF-α and GM-CSF mRNA stability.


1998 ◽  
Vol 5 (4) ◽  
pp. 588-591 ◽  
Author(s):  
Patricia Méndez-Samperio ◽  
Marisol Hernandez-Garay ◽  
Angela Nuñez Vazquez

ABSTRACT The effect of exogenous transforming growth factor β (TGF-β) onMycobacterium bovis BCG-induced tumor necrosis factor alpha (TNF-α) production by human mononuclear cells was studied. It was found that TNF-α production by human cells stimulated with BCG was significantly inhibited by TGF-β. The specificity of the observed inhibition was demonstrated, since the addition of an anti-TGF-β neutralizing monoclonal antibody completely reversed the inhibitory effect. Furthermore, the suppressive effect of TGF-β on TNF-α secretion in this system was not due to a direct cytotoxic effect, since cell viability was comparable in the presence or absence of TGF-β. Interestingly, our results demonstrated comparative suppressive effects of TGF-β and interleukin-10 on BCG-induced TNF-α secretion. Together, the data demonstrate, for the first time, that TGF-β inhibits BCG-induced TNF-α secretion by human cells.


1999 ◽  
Vol 82 (10) ◽  
pp. 1297-1301 ◽  
Author(s):  
Takayoshi Shimokawa ◽  
Tetsuhito Kojima ◽  
David Loskutoff ◽  
Hidehiko Saito ◽  
Koji Yamamoto

SummaryProtein C is a precursor of the anticoagulant serine protease, activated protein C, which inhibits coagulation factors Va and VIIIa. Although the liver appears to be the primary site of protein C synthesis, we previously demonstrated that the kidney and male reproductive organs also expressed abundant protein C mRNA in the mouse. In the present study, we further investigated the effects of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and transforming growth factor-β (TGF-β) on the expression of protein C mRNA in the principal producing organs, i.e., the liver, kidney, and testis. Both quantitative reverse transcription-PCR assay and in situ hybridization analysis revealed that TNF-α decreased protein C mRNA expression in the liver, kidney, and testis. IL-1 also down-regulated protein C mRNA expression in the liver and testis, but not in the kidney. In contrast, TGF-β unchanged the expression level of protein C mRNA in these three organs. These observations suggest that TNF-α and IL-1 may contribute to an increase in the procoagulant potential by down-regulation of protein C synthesis in the tissues during inflammatory processes.


Sign in / Sign up

Export Citation Format

Share Document