Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-κB and inflammation

2002 ◽  
Vol 92 (2) ◽  
pp. 795-801 ◽  
Author(s):  
Jihee Lee Kang ◽  
Wann Park ◽  
In Soon Pack ◽  
Hui Su Lee ◽  
Mi Jung Kim ◽  
...  

The effect of inhaled nitric oxide (NO) on inflammatory process in acute lung injury (ALI) is unclear. The aims of this study were to 1) examine whether inhaled NO affects the biochemical lung injury parameters and cellular inflammatory responses and 2) determine the effect of inhaled NO on the activation of nuclear factor-κB (NF-κB) in lipopolysaccharide (LPS)-induced ALI. Compared with saline controls, rabbits treated intravenously with LPS showed increases in total protein and lactate dehydrogenase in the bronchoalveolar lavage (BAL) fluid, indicating ALI. LPS-treated animals with NO inhalation (LPS-NO) showed significant decreases in these parameters. Neutrophil numbers in the BAL fluid, the activity of reactive oxygen species in BAL cells, and the levels of interleukin (IL)-1β and IL-8 in alveolar macrophages were increased in LPS-treated animals. In contrast, neutrophil numbers and these cellular activities were substantially decreased in LPS-NO animals, compared with LPS-treated animals. NF-κB activation in alveolar macrophages from LPS-treated animals was also markedly increased, whereas this activity was effectively blocked in LPS-NO animals. These results suggest that inhaled NO attenuates LPS-induced ALI and pulmonary inflammation. This attenuation may be associated with the inhibition of NF-κB activation.

1997 ◽  
Vol 272 (5) ◽  
pp. L903-L907 ◽  
Author(s):  
C. G. Robbins ◽  
S. Horowitz ◽  
T. A. Merritt ◽  
A. Kheiter ◽  
J. Tierney ◽  
...  

We previously demonstrated that 48 h of 100 ppm inhaled nitric oxide (NO) and 90% O2 causes surfactant dysfunction and pulmonary inflammation in mechanically ventilated newborn piglets. Because peroxynitrite (the product of NO and superoxide) is thought to play a major role in the injury process, recombinant human superoxide dismutase (rhSOD, a scavenger of superoxide) might minimize this insult. Four groups of newborn piglets (1-3 days of age) were ventilated with 100 ppm NO and 90% O2 for 48 h. Piglets received no drug, 5 mg/kg rhSOD intratracheally at time 0, 5 mg/kg rhSOD intratracheally at 0 and 24 h, or 10 mg/kg rhSOD by nebulization at time 0. At 48 h, bronchoalveolar lavage (BAL) was performed, and lung tissue was analyzed for markers of inflammation, oxidative injury, acute lung injury, and surfactant function. There were significant differences between rhSOD-treated piglets and untreated controls with respect to BAL neutrophil chemotactic activity, cell counts, and protein concentration as well as lung tissue malondialdehyde concentrations. Minimum surface tension of BAL surfactant from all groups studied was increased, with no differences found among groups. These data suggest that rhSOD, at the doses used, mitigated the inflammatory changes, oxidative damage, and acute lung injury from exposure to 100 ppm NO and 90% O2 but did not appear to improve surfactant function. This has important clinical implications for infants treated with hyperoxia and NO for neonatal lung disorders.


2019 ◽  
Vol 317 (3) ◽  
pp. L381-L391 ◽  
Author(s):  
Haichong Zheng ◽  
Wenjie Liang ◽  
Wanmei He ◽  
Chunrong Huang ◽  
Qingui Chen ◽  
...  

Ghrelin has proven to be protective against sepsis-induced acute lung injury (ALI) via anti-inflammatory effects. However, its mechanisms remain poorly understood. Alveolar macrophages (AMs) play a key role in mediating inflammatory responses during sepsis-induced ALI by secretion of cytokines and chemokines. This study was undertaken to investigate whether ghrelin suppresses inflammatory effects of AMs and therefore may help to attenuate sepsis-induced ALI. A sepsis model in rats was achieved using cecal ligation and puncture. Ghrelin treatment markedly improved histopathological changes in the lungs and reduced pulmonary inflammation in septic rats. NF-κB translocation and p-Akt and inducible nitric oxide synthase (iNOS) activities in AMs from septic rats were suppressed by ghrelin. In vitro data indicated that ghrelin decreased the levels of LPS-induced IL-1β, TNF-α, and IL-6, NF-κB translocation, and iNOS and Akt activities of AMs. Furthermore, the NF-κB/iNOS pathway or Akt signaling was positively correlated with LPS-induced inflammatory production of AMs in vitro. In conclusion, ghrelin exerts a protective role against sepsis-induced ALI probably by reducing the production of inflammatory cytokines from AMs via inhibition of the NF-κB/iNOS pathway or Akt signaling.


2019 ◽  
Vol 306 ◽  
pp. 53-60 ◽  
Author(s):  
Jianchang Qian ◽  
Xuemei Chen ◽  
Xiaojun Chen ◽  
Chuchu Sun ◽  
Yuchen Jiang ◽  
...  

2000 ◽  
Vol 68 (12) ◽  
pp. 7087-7093 ◽  
Author(s):  
Y.-H. Li ◽  
Z.-Q. Yan ◽  
J. Skov Jensen ◽  
K. Tullus ◽  
A. Brauner

ABSTRACT Chronic lung disease (CLD) of prematurity is an inflammatory disease with a multifactorial etiology. The importance ofUreaplasma urealyticum in the development of CLD is debated, and steroids produce some improvement in neonates with this disease. In the present study, the capability of U. urealyticum to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS), and activate nuclear factor κB (NF-κB) in vitro was characterized. The effect of NO on the growth of U. urealyticum was also investigated. In addition, the impact of dexamethasone and budesonide on these processes was examined. We found that U. urealyticum antigen (≥4 × 107 color-changing units/ml) stimulated alveolar macrophages to produce NO in a dose- and time-dependent manner (P < 0.05). This effect was further enhanced by gamma interferon (100 IU/ml; P < 0.05) but was attenuated by budesonide and dexamethasone (10−4 to 10−6 M) (P < 0.05). The mRNA and protein levels of iNOS were also induced in response to U. urealyticum and inhibited by steroids.U. urealyticum antigen triggered NF-κB activation, a possible mechanism for the induced iNOS expression, which also was inhibited by steroids. NO induced by U. urealyticum caused a sixfold reduction of its own growth after infection for 10 h. Our findings imply that U. urealyticum may be an important factor in the development of CLD. The host defense response againstU. urealyticum infection may also be influenced by NO. The down-regulatory effect of steroids on NF-κB activation, iNOS expression, and NO production might partly explain the beneficial effect of steroids in neonates with CLD.


2003 ◽  
Vol 29 (10) ◽  
pp. 1790-1797 ◽  
Author(s):  
Henning D. Stubbe ◽  
Martin Westphal ◽  
Hugo Van Aken ◽  
Christoph Hucklenbruch ◽  
Stefan Lauer ◽  
...  

2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


2009 ◽  
Vol 160 (2) ◽  
pp. 283-292 ◽  
Author(s):  
S. Tanaka ◽  
S. Nishiumi ◽  
M. Nishida ◽  
Y. Mizushina ◽  
K. Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document