Exercise pressor reflex function in female rats fluctuates with the estrous cycle

2012 ◽  
Vol 113 (5) ◽  
pp. 719-726 ◽  
Author(s):  
Satoshi Koba ◽  
Kenshi Yoshinaga ◽  
Sayaka Fujita ◽  
Michio Miyoshi ◽  
Tatsuo Watanabe

In women, sympathoexcitation during static handgrip exercise is reduced during the follicular phase of the ovarian cycle compared with the menstrual phase. Previous animal studies have demonstrated that estrogen modulates the exercise pressor reflex, a sympathoexcitatory mechanism originating in contracting skeletal muscle. The present study was conducted in female rats to determine whether skeletal muscle contraction-evoked reflex sympathoexcitation fluctuates with the estrous cycle. The estrous cycle was judged by vaginal smear. Plasma concentrations of estrogen were significantly ( P < 0.05) higher in rats during the proestrus phase of the estrus cycle than those during the diestrus phase. In decerebrate rats, either electrically induced 30-s continuous static contraction of the hindlimb muscle or 30-s passive stretch of Achilles tendon (a maneuver that selectively stimulates mechanically sensitive muscle afferents) evoked less renal sympathoexcitatory and pressor responses in the proestrus animals than in the diestrus animals. Renal sympathoexcitatory response to 1-min intermittent (1- to 4-s stimulation to relaxation) bouts of static contraction was also significantly less in the proestrus rats than that in the diestrus rats. In ovariectomized female rats, 17β-estradiol applied into a well covering the dorsal surface of the lumbar spinal cord significantly reduced skeletal muscle contraction-evoked responses. These observations demonstrate that the exercise pressor reflex function and its mechanical component fluctuate with the estrous cycle in rats. Estrogen may cause these fluctuations through its attenuating effects on the spinal component of the reflex arc.

2000 ◽  
Vol 279 (6) ◽  
pp. H2986-H2993 ◽  
Author(s):  
Jianhua Li ◽  
Jere H. Mitchell

The periaqueductal gray (PAG) of the midbrain is involved in the autonomic regulation of the cardiovascular system. The purpose of this study was to determine if static contraction of the skeletal muscle, which increases arterial blood pressure and heart rate, activates neuronal cells in the PAG by examining Fos-like immunoreactivity (FLI). Muscle contraction was induced by electrical stimulation of the L7 and S1 ventral roots of the spinal cord in anesthetized cats. An intravenous infusion of phenylephrine (PE) was used to selectively activate arterial baroreceptors. Extensive FLI was observed within the ventromedial region (VM) of the rostral PAG, the dorsolateral (DL), lateral (L), and ventrolateral (VL) regions of the middle and caudal PAG in barointact animals with muscle contractions, and in barointact animals with PE infusion. However, muscle contraction caused a lesser number of FLI in the VM region of the rostral PAG, the DL, L, and VL regions of the middle PAG and the L and VL regions of the caudal PAG after barodenervation compared with barointact animals. Additionally, the number of FLI in the DL and L regions of the middle PAG was greater in barodenervated animals with muscle contraction than in barodenervated control animals. Thus these results indicated that both muscle receptor and baroreceptor afferent inputs activate neuronal cells in regions of the PAG during muscle contraction. Furthermore, afferents from skeletal muscle activate neurons in specific regions of the PAG independent of arterial baroreceptor input. Therefore, neuronal cells in the PAG may play a role in determining the cardiovascular responses during the exercise pressor reflex.


1994 ◽  
Vol 267 (4) ◽  
pp. R909-R915 ◽  
Author(s):  
C. L. Stebbins ◽  
A. Ortiz-Acevedo

We tested the hypothesis that oxytocin (Oxt) acts in the lumbar spinal cord to attenuate reflex pressor (mean arterial pressure, MAP) and heart rate (HR) responses to static hindlimb contraction (i.e., the exercise pressor reflex). Thus we compared MAP and HR responses to electrically stimulated hindlimb static contraction in the anesthetized cat before and after intrathecal injection of Oxt (30 pmol, n = 3; 300 pmol, n = 6; or 3 nmol, n = 6). The 300-pmol dose was most effective; it attenuated the pressor response to static contraction by 39 +/- 10% but had no effect on HR. In three other cats, contraction-induced increases in MAP and HR were monitored before and after intrathecal injection of 300 pmol of Oxt + 300 nmol of the selective Oxt receptor antagonist [d(CH2)5(1),O-Me-Tyr2,Thr4,Tyr9,Orn8]vasotocin. Pretreatment with the antagonist eliminated the effect of Oxt on MAP. In an additional 10 cats, increases in these same variables in response to static contraction were compared before and after intrathecal injection of the Oxt antagonist (30 nmol, n = 3 or 300 nmol, n = 7) into the lumbar spinal cord (L1-L7). Whereas 30 nmol of the Oxt antagonist had no effect, the 300-nmol dose augmented the contraction-induced pressor and HR responses by 28 +/- 7 and 32 +/- 17%, respectively. These data imply that endogenous Oxt modulates the exercise pressor reflex by its action on Oxt receptors in the lumbar spinal cord that can attenuate sensory nerve transmission from skeletal muscle.


2006 ◽  
Vol 100 (3) ◽  
pp. 958-964 ◽  
Author(s):  
Petra M. Schmitt ◽  
Kishorchandra Gohil ◽  
Marc P. Kaufman

Previously, our laboratory showed that estrogen, topically applied to the spinal cord, attenuated the exercise pressor reflex in female cats (Schmitt PM and Kaufman MP. J Appl Physiol 95: 1418–1424, 2003; 98: 633–639, 2005). The attenuation was gender specific and was in part opioid dependent. Our finding that the μ- and δ-opioid antagonist naloxone was only able to partially restore estrogen’s attenuating effect on the pressor response to static contraction suggested that estrogen affected an additional pathway, involving the dorsal root ganglion (DRG). Estrogen has been described to stimulate transcription within 10 min of its application to the DRG, raising the possibility that rapid genomic effects on neurotransmitter production may have contributed to estrogen’s effect on the exercise pressor reflex. This prompted us to test the hypothesis that estrogen modulated the pressor response to static contraction by influencing gene expression of the neurotransmitters released by the thin-fiber muscle afferents that evoke the exercise pressor reflex. We confirmed in decerebrated female rats that topical application of estrogen (0.01 μg/ml) to the lumbosacral spinal cord attenuated the pressor response to static muscle contraction (from 10 ± 3 to 1 ± 1 mmHg; P < 0.05). DRG were then harvested postmortem, and changes in mRNA expression were analyzed. GeneChip analysis revealed that neither estrogen nor contraction alone changed the mRNA expression of substance P, the neurokinin-1 receptor, CGRP, NGF, the P2X3 receptor, GABAA and GABAB, the 5-HT3A and 5-HT3B receptor, N-methyl-d-aspartate and non- N-methyl-d-aspartate receptors, opioid receptors, and opioid-like receptor. Surprisingly, however, contraction stimulated the expression of neuropeptide Y in the DRG in the presence and absence of estrogen. We conclude that estrogen does not attenuate the exercise pressor reflex through a genomic effect in the DRG.


1998 ◽  
Vol 274 (5) ◽  
pp. H1841-H1847 ◽  
Author(s):  
Jeffrey T. Potts ◽  
Jianhua Li

Because arterial baroreceptor and skeletal muscle receptor afferents project to cardiovascular regions in the lower brain stem such as the nucleus tractus solitarii (NTS), it is likely that the level of baroreceptor afferent input will modify the excitatory cardiovascular responses evoked by contraction-sensitive skeletal muscle afferents. The purpose of this study was to determine the effect of carotid sinus baroreceptor afferent input (CSA) on reflex heart rate (HR) and mean arterial pressure (MAP) responses evoked by activation of skeletal muscle receptor afferents (SMA). CSA input was servo controlled at three levels of carotid sinus pressure using the isolated carotid sinus preparation, and SMA input was varied by induced muscle contraction (L7-S1ventral root stimulation) or passive muscle stretch. Experiments were performed in α-chloralose-anesthetized and vagotomized dogs ( n = 9). When CSA input was low (106 ± 35 mmHg), electrically induced muscle contraction increased HR and MAP (30 ± 8 beats/min and 42 ± 12 mmHg, respectively, P < 0.05). However, when CSA input was high (221 ± 9 mmHg), the reflex changes in HR and MAP during muscle contraction were attenuated (6 ± 4 beats/min and 18 ± 4 mmHg, respectively, P< 0.05). Similarly, the sympathoexcitatory responses evoked by passive muscle stretch were attenuated in a baroreceptor-dependent manner. These results suggest that changing CSA input from low (106 mmHg) to high (221 mmHg) shifts the interaction from facilitation to inhibition. Therefore, it is concluded that the nature of the interaction (i.e., facilitation or inhibition) between the baroreflex and the exercise pressor reflex is dependent on the level of baroreceptor input. Moreover, our findings substantiate early studies showing that the level of afferent input from arterial baroreceptors is a powerful modulator of sympathoexcitation evoked by mechanically and metabolically sensitive skeletal muscle receptors.


1984 ◽  
Vol 57 (2) ◽  
pp. 380-387 ◽  
Author(s):  
J. C. Longhurst

Static contraction of skeletal muscle is associated with increased ventilation. Although chemical stimulation of afferents from skeletal muscle causes relaxation of tracheal smooth muscle, it is not known if skeletal muscle contraction also causes tracheal relaxation. Therefore, in 10 chloralose-anesthetized cats, I examined the hemodynamic and tracheal smooth muscle responses to hindlimb skeletal muscle contraction induced by stimulating the L7 and S1 ventral roots. Isometric tension was measured in the transverse cervical trachea. During contraction average gastrocnemius tension increased from 0.7 +/- 0.1 to 4.9 +/- 0.6 kg, blood pressure and heart rate increased from 100 +/- 8 to 128 +/- 9 mmHg and from 192 +/- 11 to 202 +/- 13 beats/min, respectively, whereas tracheal tension decreased from 19.7 +/- 0.4 to 17.5 +/- 0.7 g (all P less than 0.02). There were significant (P less than 0.01) linear correlations between change in tracheal tension and maximal developed tension (r = -0.65), tension time (r = -0.68), and average developed tension (r = -0.76). Transection of the L7 and S1 dorsal roots in six cats reduced the tracheal relaxation associated with muscle contraction (pre: 19.9 +/- 0.3 to 17.5 +/- 0.3 g vs. post: 20.3 +/- 0.4 to 20.3 +/- 0.6 g) while average developed gastrocnemius muscle tension was not altered (pre: 1.1 +/- 0.1 to 6.4 +/- 1.1 kg vs. post: 1.2 +/- 0.2 to 6.8 +/- 1.2 kg). Thus static contraction of hindlimb muscles in cats reflexly lowers tracheal tension. This response is related to muscle mass and total tension generated by the contracting skeletal muscle.


2009 ◽  
Vol 297 (1) ◽  
pp. H443-H449 ◽  
Author(s):  
Jennifer L. McCord ◽  
Hirotsugu Tsuchimochi ◽  
Marc P. Kaufman

The exercise pressor reflex is evoked by both mechanical and metabolic stimuli arising in contracting skeletal muscle. Recently, the blockade of acid-sensing ion channels (ASICs) with amiloride and A-316567 attenuated the reflex. Moreover, amiloride had no effect on the mechanoreceptor component of the reflex, prompting us to determine whether ASICs contributed to the metaboreceptor component of the exercise pressor reflex. The metaboreceptor component can be assessed by measuring mean arterial pressure during postcontraction circulatory occlusion when only the metaboreceptors are stimulated. We examined the effects of amiloride (0.5 μg/kg), A-317567 (10 mM, 0.5 ml), and saline (0.5 ml) on the pressor response to and after static contraction while the circulation was occluded in 30 decerebrated cats. Amiloride ( n = 11) and A-317567 ( n = 7), injected into the arterial supply of the triceps surae muscles, attenuated the pressor responses both to contraction while the circulation was occluded and to postcontraction circulatory occlusion (all, P < 0.05). Saline ( n = 11), however, had no effect on the pressor responses to contraction while the circulation was occluded or to postcontraction circulatory occlusion (both, P > 0.79). Our findings led us to conclude that ASICs contribute to the metaboreceptor component of the exercise pressor reflex.


2017 ◽  
Vol 44 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Jihong Xing ◽  
Jianhua Li

Background/Aims: Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. Methods: A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. Results: The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. Conclusions: The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease.


1990 ◽  
Vol 69 (4) ◽  
pp. 1225-1230 ◽  
Author(s):  
C. L. Stebbins ◽  
O. A. Carretero ◽  
T. Mindroiu ◽  
J. C. Longhurst

Results of previous studies from our laboratory suggest that bradykinin has a role in the exercise pressor reflex elicited by static muscle contraction. The purpose of this study was to quantify the release of bradykinin from contracting skeletal muscle. In 18 cats, blood samples were withdrawn directly from the venous effluent of the triceps surae muscles immediately before and after 30 s of static contraction producing peak muscle tensions of 33, 50, and 100% of maximum electrically stimulated contraction. Contractions producing muscle tensions of 50 and 100% of maximum increased muscle venous bradykinin levels by 27 +/- 9 and 19 +/- 10 pg/ml, respectively. Conversely, 33% maximum contraction did not alter muscle venous bradykinin concentrations. However, when captopril was administered to slow the degradation of bradykinin, muscle venous bradykinin increased from 68 +/- 15 pg/ml at rest to 106 +/- 18 after contractions of 33% of maximum. When muscle ischemia was induced by 2 min of arterial occlusion before and during 30 s of 33% of maximum contraction, muscle venous bradykinin increased by 15 +/- 5 pg/ml. In addition, contraction-induced changes in muscle venous pH and lactate strongly correlated with bradykinin concentrations (r = 0.80 and 0.83, respectively). These data demonstrate that static contraction of relatively high intensity evokes the release of bradykinin from skeletal muscle and that ischemia, decreased pH, and increased lactate are strongly correlated with this release.


Sign in / Sign up

Export Citation Format

Share Document