scholarly journals Improved single muscle fiber quality in the oldest-old

2016 ◽  
Vol 121 (4) ◽  
pp. 878-884 ◽  
Author(s):  
Greg J. Grosicki ◽  
Robert A. Standley ◽  
Kevin A. Murach ◽  
Ulrika Raue ◽  
Kiril Minchev ◽  
...  

We examined single muscle fiber contractile function of the oldest-old (3F/2M, 89 ± 1 yr old) enrolled in The Health, Aging, and Body Composition Study (The Health ABC Study). Vastus lateralis muscle biopsies were obtained and single muscle fiber function was determined ( n = 105) prior to myosin heavy chain (MHC) isoform identification with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cross-sectional area of MHC I muscle fibers (5,576 ± 333 μm2; n = 58) was 21% larger ( P < 0.05) than MHC IIa fibers (4,518 ± 386 μm2; n = 47). Normalized power (an indicator of muscle fiber quality incorporating size, strength, and speed) of MHC I and IIa muscle fibers was 2.3 ± 0.1 and 17.4 ± 0.8 W/l, respectively. Compared with previous research from our lab using identical procedures, MHC I normalized power was 28% higher than healthy 20 yr olds and similar to younger octogenarians (∼80 yr old). Normalized power of MHC IIa fibers was 63% greater than 20 yr olds and 39% greater than younger octogenarians. These comparative data suggest that power output per unit size (i.e., muscle quality) of remaining muscle fibers improves with age, a phenomenon more pronounced in MHC IIa fibers. Age-related single muscle fiber quality improvements may be a compensatory mechanism to help offset decrements in whole muscle function.

2000 ◽  
Vol 89 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Scott Trappe ◽  
David Williamson ◽  
Michael Godard ◽  
David Porter ◽  
Greg Rowden ◽  
...  

The purpose of this study was to examine single cell contractile mechanics of skeletal muscle before and after 12 wk of progressive resistance training (PRT) in older men ( n = 7; age = 74 ± 2 yr and weight = 75 ± 5 kg). Knee extensor PRT was performed 3 days/wk at 80% of one-repetition maximum. Muscle biopsy samples were obtained from the vastus lateralis before and after PRT (pre- and post-PRT, respectively). For analysis, chemically skinned single muscle fibers were studied at 15°C for peak tension [the maximal isometric force (Po)], unloaded shortening velocity ( V o), and force-velocity parameters. In this study, a total of 199 (89 pre- and 110 post-PRT) myosin heavy chain (MHC) I and 99 (55 pre- and 44 post-PRT) MHC IIa fibers were reported. Because of the minimal number of hybrid fibers identified post-PRT, direct comparisons were limited to MHC I and IIa fibers. Muscle fiber diameter increased 20% (83 ± 1 to 100 ± 1 μm) and 13% (86 ± 1 to 97 ± 2 μm) in MHC I and IIa fibers, respectively ( P < 0.05). Po was higher ( P < 0.05) in MHC I (0.58 ± 0.02 to 0.90 ± 0.02 mN) and IIa (0.68 ± 0.02 to 0.85 ± 0.03 mN) fibers. Muscle fiber V o was elevated 75% (MHC I) and 45% (MHC IIa) after PRT ( P < 0.05). MHC I and IIa fiber power increased ( P < 0.05) from 7.7 ± 0.5 to 17.6 ± 0.9 μN · fiber lengths · s−1 and from 25.5 to 41.1 μN · fiber lengths · s−1, respectively. These data indicate that PRT in elderly men increases muscle cell size, strength, contractile velocity, and power in both slow- and fast-twitch muscle fibers. However, it appears that these changes are more pronounced in the MHC I muscle fibers.


2001 ◽  
Vol 91 (5) ◽  
pp. 1955-1961 ◽  
Author(s):  
D. L. Williamson ◽  
P. M. Gallagher ◽  
C. C. Carroll ◽  
U. Raue ◽  
S. W. Trappe

The purpose of this investigation was to examine the effects of 12 wk of progressive resistance training (PRT) on single muscle fiber myosin heavy chain (MHC; I, I/IIa, I/IIa/IIx, IIa, IIa/IIx, IIx) isoform proportions in young individuals. Young, untrained men (YM; n = 6) and women (YW; n = 6) (age = 22 ± 1 and 25 ± 2 yr for YW and YM, respectively) received pre- and post-PRT muscle biopsies from the right vastus lateralis for single muscle fiber MHC distribution by electrophoretic analysis (192 ± 5 pre- and 183 ± 6 post-fibers/subject analyzed; 4,495 fibers total). Data are presented as percentages of the total fibers analyzed per subject. The PRT protocol elicited an increase in the pure MHC IIa (Δ = + 24 and + 27; YW and YM, respectively; P < 0.05) with no change in the pure MHC I distribution. The hybrid MHC distributions decreased I/IIa/IIx (Δ = −2; YM and YW; P < 0.05), IIa/IIx (Δ = −13 and −19 for YM and YW, respectively; P < 0.05), and total hybrid fiber proportion (I/IIa + I/IIa/IIx + IIa/IIx) decreased (Δ = −19 and −30 for YM and YW, respectively; P < 0.05) with the training, as did the MHC IIx distribution (Δ = −2; YW only; P < 0.05). Alterations in the predominance of MHC isoforms within hybrid fibers (decrease in MHC I-dominant I/IIa and nondominant MHC IIa/IIx, increase in MHC IIa-dominant IIa/IIx; P < 0.05) appeared to contribute to the increase in the MHC IIa proportion. Electrophoresis of muscle cross sections revealed an ∼7% increase ( P< 0.05) in MHC IIa proportion in both groups, whereas the MHC IIx decrease by 7.5 and 11.6% post-PRT in YW and YM, respectively. MHC I proportions increase in YM by 4.8% ( P < 0.05) post-PRT. These findings further support previous resistance training data in young adults with respect to the increase in the MHC IIa proportions but demonstrate that a majority of the change can be attributed to the decrease in single-fiber hybrid proportions.


2019 ◽  
Vol 127 (6) ◽  
pp. 1710-1719 ◽  
Author(s):  
Kevin J. Gries ◽  
Kiril Minchev ◽  
Ulrika Raue ◽  
Gregory J. Grosicki ◽  
Gwénaëlle Begue ◽  
...  

The purpose of this study was to examine the effects of lifelong aerobic exercise on single-muscle fiber performance in trained women (LLE; n = 7, 72 ± 2 yr) by comparing them to old healthy nonexercisers (OH; n = 10, 75 ± 1 yr) and young exercisers (YE; n = 10, 25 ± 1 yr). On average, LLE had exercised ~5 days/wk for ~7 h/wk over the past 48 ± 2 yr. Each subject had a vastus lateralis muscle biopsy to examine myosin heavy chain (MHC) I and IIa single-muscle fiber size and function (strength, speed, power). MHC I fiber size was similar across all three cohorts (YE = 5,178 ± 157, LLE = 4,983 ± 184, OH = 4,902 ± 159 µm2). MHC IIa fiber size decreased ( P < 0.05) 36% with aging (YE = 4,719 ± 164 vs. OH = 3,031 ± 153 µm2), with LLE showing a similar 31% reduction (3,253 ± 189 µm2). LLE had 17% more powerful ( P < 0.05) MHC I fibers and offset the 18% decline in MHC IIa fiber power observed with aging ( P < 0.05). The LLE contractile power was driven by greater strength (+11%, P = 0.056) in MHC I fibers and elevated contractile speed (+12%, P < 0.05) in MHC IIa fibers. These data indicate that lifelong exercise did not benefit MHC I or IIa muscle fiber size. However, LLE had contractile function adaptations that enhanced MHC I fiber power and preserved MHC IIa fiber power through different contractile mechanisms (strength vs. speed). The single-muscle fiber contractile properties observed with lifelong aerobic exercise are unique and provide new insights into aging skeletal muscle plasticity in women at the myocellular level. NEW & NOTEWORTHY This is the first investigation to examine the effects of lifelong exercise on single-muscle fiber physiology in women. Nearly 50 yr of moderate to vigorous aerobic exercise training resulted in enhanced slow-twitch fiber power primarily by increasing force production, whereas fast-twitch fiber power was preserved primarily by increasing contractile speed. These unique muscle fiber power profiles helped offset the effects of fast-twitch fiber atrophy and highlight the benefits of lifelong aerobic exercise for myocellular health.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S276
Author(s):  
Dustin Slivka ◽  
Ulrika Raue ◽  
Kiril Minchev ◽  
Scott Trappe

1970 ◽  
Vol 55 (2) ◽  
pp. 243-253 ◽  
Author(s):  
B. A. Curtis

An apparatus is described which collects the effluent from the center 0.7 cm of a single muscle fiber or bundle of muscle fibers. It was used to study the efflux of 45Ca from twitch muscle fibers. The efflux can be described by three time constants 18 ± 2 min, 300 ± 40 min, and 882 ± 172 min. These kinetics have been interpreted as those of a three-compartment system. The fastest is thought to be on the surface membrane of the muscle and of the T system. It contains 0.07 ± 0.03 mM Ca/liter of fiber and the Ca efflux is 0.11 ± 0.04 pM Ca/cm2. sec. The intermediate rate compartment is thought to represent the Ca in the longitudinal reticulum. It contains approximately 0.77 mM Ca/liter. Only the efflux from this compartment increases during stimulation. The most slowly exchanging compartment is poorly defined. Neither Ca-free nor Ni-Ringer solutions alter the rate of loss from the fastest exchanging compartment. Ni apparently alters the rate of loss from the slowest compartment.


Neurology ◽  
2020 ◽  
Vol 94 (11) ◽  
pp. e1157-e1170 ◽  
Author(s):  
Saskia Lassche ◽  
Nicol C. Voermans ◽  
Robbert van der Pijl ◽  
Marloes van den Berg ◽  
Arend Heerschap ◽  
...  

ObjectiveTo investigate single muscle fiber contractile performance in muscle biopsies from patients with facioscapulohumeral muscular dystrophy (FSHD), one of the most common hereditary muscle disorders.MethodsWe collected 50 muscle biopsies (26 vastus lateralis, 24 tibialis anterior) from 14 patients with genetically confirmed FSHD and 12 healthy controls. Single muscle fibers (n = 547) were isolated for contractile measurements. Titin content and titin phosphorylation were examined in vastus lateralis muscle biopsies.ResultsSingle muscle fiber specific force was intact at saturating and physiologic calcium concentrations in all FSHD biopsies, with (FSHDFAT) and without (FSHDNORMAL) fatty infiltration, compared to healthy controls. Myofilament calcium sensitivity of force is increased in single muscle fibers obtained from FSHD muscle biopsies with increased fatty infiltration, but not in FSHD muscle biopsies without fatty infiltration (pCa50: 5.77–5.80 in healthy controls, 5.74–5.83 in FSHDNORMAL, and 5.86–5.90 in FSHDFAT single muscle fibers). Cross-bridge cycling kinetics at saturating calcium concentrations and myofilament cooperativity did not differ from healthy controls. Development of single muscle fiber passive tension was changed in all FSHD vastus lateralis and in FSHDFAT tibialis anterior, resulting in increased fiber stiffness. Titin content was increased in FSHD vastus lateralis biopsies; however, titin phosphorylation did not differ from healthy controls.ConclusionMuscle weakness in patients with FSHD is not caused by reduced specific force of individual muscle fibers, even in severely affected tissue with marked fatty infiltration of muscle tissue.


2001 ◽  
Vol 281 (2) ◽  
pp. C398-C406 ◽  
Author(s):  
Scott Trappe ◽  
Michael Godard ◽  
Philip Gallagher ◽  
Chad Carroll ◽  
Greg Rowden ◽  
...  

The purpose of this study was to 1) examine single cell contractile mechanics of skeletal muscle before and after 12 wk of progressive resistance training (PRT) in older women ( n = 7; 74 ± 2 yr) and 2) to compare these results to our previously completed single cell PRT work with older men ( n = 7; 74 ± 2 yr) (Trappe S, Williamson D, Godard M, Porter D, Rowden G, and Costill D. J Applied Physiol 89:143–152, 2000). Knee extensor PRT was performed 3 days/wk at 80% of one-repetition maximum. Muscle biopsies were obtained from the vastus lateralis before and after the PRT. Chemically skinned single muscle fibers ( n = 313) were studied at 15°C for peak tension (Po), unloaded shortening velocity ( V o), and power. Due to the low number of hybrid fibers identified post-PRT, direct comparisons were limited to MHC I and IIa fibers. Muscle fiber diameter increased 24% (90 ± 2 to 112 ± 6 μm; P < 0.05) in MHC I fibers with no change in MHC IIa fibers. Po increased ( P< 0.05) 33% in MHC I (0.76 ± 0.04 to 1.01 ± 0.09 mN) and 14% in MHC IIa (0.73 ± 0.04 to 0.83 ± 0.05 mN) fibers. Muscle fiber V o was unaltered in both fiber types with PRT. MHC I and IIa fiber power increased ( P< 0.05) 50% [11 ± 2 to 17 ± 2 μN · fiber length (FL) · s−1] and 25% (40 ± 8 to 51 ± 6 μN · FL · s−1), respectively. However, when peak power was normalized to cell size, no pre- to postimprovements were observed. These data indicate that PRT in elderly women increases muscle cell size, strength, and peak power in both slow and fast muscle fibers, which was similar to the older men. However, in contrast to the older men, no change in fiber V o or normalized power was observed in the older women. These data suggest that older men and women respond differently at the muscle cell level to the same resistance-training stimulus.


2008 ◽  
Vol 294 (3) ◽  
pp. R939-R947 ◽  
Author(s):  
Scott Trappe ◽  
Andrew Creer ◽  
Kiril Minchev ◽  
Dustin Slivka ◽  
Emily Louis ◽  
...  

The soleus muscle has been consistently shown to atrophy more than other leg muscles during unloading and is difficult to protect using various exercise countermeasure paradigms. However, the efficacy of aerobic exercise, a known stimulus for oxidative adaptations, has not been tested in combination with resistance exercise (RE), a known hypertrophic stimulus. We hypothesized that a concurrent exercise program (AE + RE) would preserve soleus fiber myosin heavy chain (MHC) I size and function during 60 days of bed rest. A secondary objective was to test the hypothesis that a leucine-enriched high protein diet would partially protect soleus single fiber characteristics. Soleus muscle biopsies were obtained before and after bed rest from a control (BR; n = 7), nutrition (BRN; n = 8), and exercise (BRE; n = 6) group. Single muscle fiber diameter (Dia), peak force (Po), contractile velocity, and power were studied. BR decreased ( P < 0.05) MHC I Dia (−14%), Po (−38%), and power (−39%) with no change in contractile velocity. Changes in MHC I size (−13%) and contractile function (∼30%) from BRN were similar to BR. BRE decreased ( P < 0.05) MHC I Dia (−13%) and Po (−23%), while contractile velocity increased ( P < 0.05) 26% and maintained power. These soleus muscle data show 1) the AE + RE exercise program maintained MHC I power but not size and strength, and 2) the nutrition countermeasure did not benefit single fiber size and contractile function. The divergent response in size and functional MHC I soleus properties with the concurrent exercise program was a unique finding further highlighting the challenges of protecting the unloaded soleus.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Alex M. Noonan ◽  
Derek P. Zwambag ◽  
Nicole Mazara ◽  
Erin Weersink ◽  
Geoffrey A. Power ◽  
...  

Abstract Studies on single muscle fiber passive material properties often report relatively large variation in elastic modulus (or normalized stiffness), and it is not clear where this variation arises. This study was designed to determine if the stiffness, normalized to both fiber cross-sectional area and length, is inherently different between types 1 and 2 muscle fibers. Vastus lateralis fibers (n = 93), from ten young men, were mechanically tested using a cumulative stretch-relaxation protocol. SDS-PAGE classified fibers as types 1 or 2. While there was a difference in normalized stiffness between fiber types (p = 0.0019), an unexpected inverse relationship was found between fiber diameter and normalized stiffness (r = −0.64; p &lt; 0.001). As fiber type and diameter are not independent, a one-way analysis of covariance (ANCOVA) including fiber diameter as a covariate was run; this eliminated the effect of fiber type on normalized stiffness (p = 0.1935). To further explore the relationship between fiber size and elastic properties, we tested whether stiffness was linearly related to fiber cross-sectional area, as would be expected for a homogenous material. Passive stiffness was not linearly related to fiber area (p &lt; 0.001), which can occur if single muscle fibers are better represented as composite materials. The rule of mixtures for composite materials was used to explore whether the presence of a stiff perimeter-based fiber component could explain the observed results. The model (R2 = 0.38) predicted a perimeter-based normalized stiffness of 8800 ± 2600 kPa/μm, which is within the range of basement membrane moduli reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document