scholarly journals Long-term post-pneumonectomy pulmonary adaptation following all-trans-retinoic acid supplementation

2011 ◽  
Vol 110 (3) ◽  
pp. 764-773 ◽  
Author(s):  
Priya Ravikumar ◽  
D. Merrill Dane ◽  
Paul McDonough ◽  
Cuneyt Yilmaz ◽  
Aaron S. Estrera ◽  
...  

In adult dogs following right pneumonectomy (PNX) and receiving all-trans-retinoic acid (RA) supplementation for 4 mo, we found modestly enhanced alveolar-capillary growth in the remaining lung without enhanced resting lung function ( J Appl Physiol 96: 1080–1089 and 96: 1090–1096, 2004). Since alveolar remodeling progresses beyond this period and the lipid-soluble RA continues to be released from tissue stores, we hypothesized that RA supplementation may exert additional long-term effects. To examine this issue, adult male litter-matched foxhounds underwent right PNX followed by RA supplementation (2 mg/kg po 4 days/wk, n = 6) or placebo ( n = 4) for 4 mo. Cardiopulmonary function was measured at rest and during exercise at 4 and 20 mo post-PNX. The remaining lung was fixed under a constant airway pressure for morphometric analysis. Comparing RA treatment to placebo controls, there were no differences in aerobic capacity, cardiopulmonary function, or lung volume at rest or exercise. Alveolar-capillary basal lamina thickness and mean harmonic thickness of air-blood diffusion barrier were 23–29% higher. The prevalence of double-capillary profiles remained 82% higher. Absolute volumes of septal interstitium, collagen fibers, cells, and matrix were 32% higher; the relative volumes of other septal components and alveolar-capillary surface areas expressed as ratios to control values were up to 24% higher. Thus RA supplementation following right PNX modestly and persistently enhanced long-term alveolar-capillary structural dimensions, especially the deposition of interstitial and connective tissue elements, in such a way that caused a net increase in barrier resistance to diffusion without improving lung mechanics or gas exchange.

Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 470-477 ◽  
Author(s):  
Louise E. Purton ◽  
Irwin D. Bernstein ◽  
Steven J. Collins

The retinoic acid receptor (RAR) agonist, all-trans retinoic acid (ATRA), is a potent inducer of terminal differentiation of malignant promyelocytes, but its effects on more primitive hematopoietic progenitors and stem cells are less clear. We previously reported that pharmacologic levels (1 μmol) of ATRA enhanced the generation of colony-forming cell (CFC) and colony-forming unit-spleen (CFU-S) in liquid suspension cultures of lin− c-kit+ Sca-1+ murine hematopoietic precursors. In this study, we further investigated the effects of ATRA as well as an RAR antagonist, AGN 193109, on the generation of transplantable cells, including pre–CFU-S, short-term repopulating stem cells (STRCs), and long-term repopulating stem cells (LTRCs). ATRA enhanced the ex vivo maintenance and production of competitive repopulating STRCs and LTRCs from lin− c-kit+ Sca-1+ cells cultured in liquid suspension for 14 days. In addition, ATRA prevented the differentiation of these primitive stem cells into more mature pre–CFU-S during the 14 days of culture. In marked contrast, lin− c-kit+ Sca-1+ cells cultured with AGN 193109 for 7 days had virtually no short- or long-term repopulating ability, but displayed an approximately 6-fold increase in the pre–CFU-S population. The data suggest that the RAR agonist ATRA enhances the maintenance and self-renewal of short- and long-term repopulating stem cells. In contrast, the RAR antagonist AGN 193109 abrogates reconstituting ability, most likely by promoting the differentiation of the primitive stem cells. These results imply an important and unexpected role of retinoids in regulating hematopoietic stem cell differentiation.


Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 653-656 ◽  
Author(s):  
Kouichi Furugaki ◽  
Katerina Pokorna ◽  
Carole Le Pogam ◽  
Masayuki Aoki ◽  
Murielle Reboul ◽  
...  

Abstract DNA vaccination and all-trans retinoic acid (ATRA) result in a survival advantage in a mouse model of acute promyelocytic leukemia (APL). Depletion of CD4+ or CD8+ cells abolished this effect. CD4+ depletions of long-term survivors resulted in relapse and death within 3 months, thus demonstrating the need of both CD4+ and CD8+ subsets for the generation of DNA-driven antileukemic immune responses and underscoring a crucial role of CD4+ cells in the maintenance of durable remissions. Degranulation and cytotoxic carboxyfluorescein diacetate succinimidyl ester–based assays showed major histocompatibility complex–restricted APL-specific T cell–mediated immune responses. Sorted APL-specific CD8+CD107a+ T cells showed an increase of antileukemic activity. Effectors from ATRA + DNA–treated mice were shown to secrete interferon-γ when stimulated with either APL cells or peptides from the promyelocytic leukemia-RARα vaccine-derived sequences as detected by ELISpot assays. Our results demonstrate that DNA vaccination with ATRA confers the effective boosting of interferon-γ–producing and cytotoxic T cells in the leukemic mice.


Sign in / Sign up

Export Citation Format

Share Document