Differential effects of age and type 2 diabetes on dynamic vs. peak response of pulmonary oxygen uptake during exercise

2015 ◽  
Vol 118 (8) ◽  
pp. 1031-1039 ◽  
Author(s):  
Eamonn O'Connor ◽  
Simon Green ◽  
Catherine Kiely ◽  
Donal O'Shea ◽  
Mikel Egaña

We investigated if the magnitude of the type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by age. Thirty-three men with T2D (15 middle-aged, 18 older), and 21 nondiabetic (ND) men (11 middle-aged, 10 older) matched by age were recruited. Participants completed four 6-min bouts of constant-load cycling at 80% ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (inert-gas rebreathing) was recorded at rest and 30 and 240 s during two additional bouts. Peak V̇o2 (determined from a separate graded test) was significantly ( P < 0.05) reduced in middle-aged and older men with T2D compared with their respective ND counterparts (middle-aged, 3.2 ± 0.5 vs. 2.5 ± 0.5 l/min; older, 2.7 ± 0.4 vs. 2.4 ± 0.4 l/min), and the magnitude of these impairments was not affected by age. However, the time constant of phase II of the V̇o2 response was only slowed ( P < 0.05) in middle-aged men with T2D compared with healthy counterparts, whereas it was similar among older men with and without T2D (middle-aged, 26.8 ± 9.3 vs. 41.6 ± 12.1 s; older, 40.5 ± 7.8 vs. 41.1 ± 8.5 s). Similarly, the “gains” in systemic vascular conductance (estimated from the slope between cardiac output and mean arterial pressure responses) were lower ( P < 0.05) in middle-aged men with T2D than ND controls, but similar between the older groups. The results suggest that the mechanisms by which T2D induces significant reductions in peak exercise performance are linked to a slower dynamic response of V̇o2 and reduced systemic vascular conductance responses in middle-aged men, whereas this is not the case in older men.

2015 ◽  
Vol 309 (8) ◽  
pp. R875-R883 ◽  
Author(s):  
Catherine Kiely ◽  
Joel Rocha ◽  
Eamonn O'Connor ◽  
Donal O'Shea ◽  
Simon Green ◽  
...  

We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30–59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇o2 was significantly ( P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇o2 response was slowed ( P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the “gains” in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇o2 and V̇o2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.


2012 ◽  
Vol 303 (1) ◽  
pp. R70-R76 ◽  
Author(s):  
Eamonn O'Connor ◽  
Catherine Kiely ◽  
Donal O'Shea ◽  
Simon Green ◽  
Mikel Egaña

The present study tested the hypothesis that the magnitude of the type 2 diabetes-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics would be greater in females than males in middle-aged participants. Thirty-two individuals with type 2 diabetes (16 male, 16 female), and 32 age- and body mass index (BMI)-matched healthy individuals (16 male, 16 female) were recruited. Initially, the ventilatory threshold (VT) and peak V̇o2 were determined. On a separate day, subjects completed four 6-min bouts of constant-load cycling at 80% VT for the determination of V̇o2 kinetics using standard procedures. Cardiac output (CO) (inert gas rebreathing) was recorded at rest, 30, and 240 s during two additional bouts. Peak V̇o2 (ml·kg−1·min−1) was significantly reduced in men and women with type 2 diabetes compared with their respective nondiabetic counterparts (men, 27.8 ± 4.4 vs. 31.1 ± 6.2 ml·kg−1·min−1; women, 19.4 ± 4.1 vs. 21.4 ± 2.9 ml·kg−1·min−1). The time constant (s) of phase 2 (τ2) and mean response time (s) of the V̇o2 response (MRT) were slowed in women with type 2 diabetes compared with healthy women (τ2, 43.3 ± 9.8 vs. 33.6 ± 10.0 s; MRT, 51.7 ± 9.4 vs. 43.5 ± 11.4s) and in men with type 2 diabetes compared with nondiabetic men (τ2, 43.8 ± 12.0 vs. 35.3 ± 9.5 s; MRT, 57.6 ± 8.3 vs. 47.3 ± 9.3 s). The magnitude of these impairments was not different between males and females. The steady-state CO responses or the dynamic responses of CO were not affected by type 2 diabetes among men or women. The results suggest that the type 2 diabetes-induced impairments in peak V̇o2 and V̇o2 kinetics are not affected by sex in middle aged participants.


2020 ◽  
Vol 45 (8) ◽  
pp. 865-874 ◽  
Author(s):  
Simon Green ◽  
Catherine Kiely ◽  
Eamonn O’Connor ◽  
Norita Gildea ◽  
Donal O’Shea ◽  
...  

Effects of training and sex on oxygen uptake dynamics during exercise in type 2 diabetes mellitus (T2DM) are not well established. We tested the hypotheses that exercise training improves the time constant of the primary phase of oxygen uptake (τp oxygen uptake) and with greater effect in males than females. Forty-one subjects with T2DM were assigned to 2 training groups (Tmale, Tfemale) and 2 control groups (Cmale, Cfemale), and were assessed before and after a 12-week intervention period. Twelve weeks of aerobic/resistance training was performed 3 times per week, 60–90 min per session. Assessments included ventilatory threshold (VT), peak oxygen uptake, τp oxygen uptake (80%VT), and dynamic responses of cardiac output, mean arterial pressure and systemic vascular conductance (80%VT). Training significantly decreased τp oxygen uptake in males by a mean of 20% (Tmale = 42.7 ± 6.2 to 34.3 ± 7.2 s) and females by a mean of 16% (Tfemale = 42.2 ± 9.3 to 35.4 ± 8.6 s); whereas τp oxygen uptake was not affected in controls (Cmale = 41.6 ± 9.8 to 42.9 ± 7.6 s; Cfemale = 40.4 ± 12.2 to 40.6 ± 13.4 s). Training increased peak oxygen uptake in both sexes (12%–13%) but did not alter systemic cardiovascular dynamics in either sex. Training improved oxygen uptake dynamics to a similar extent in males and females in the absence of changes in systemic cardiovascular dynamics. Novelty Similar training improvements in oxygen uptake dynamics were observed in males and females with T2DM. In both sexes these improvements occurred without changes in systemic cardiovascular dynamics.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Cole Buchanan ◽  
Ashley Pratt-Cordova ◽  
Gregory Coe ◽  
Larry A Allen ◽  
Eugene E Wolfel ◽  
...  

Introduction: HFrEF can be classified by profiles A, B, C or L based on resting pulmonary capillary wedge pressure (PCWP) and cardiac output (Qc). We characterized exertional hemodynamics by HF profile. Methods: HFrEF patients (N=34) completed invasive exercise testing with Swan-Ganz and radial arterial catheterization on upright bicycle. Oxygen uptake was monitored by indirect calorimetry. Data were recorded at supine and upright rest, two exercise stages below ventilatory threshold (steady states 1 and 2), and peak exercise. Participants were stratified into HF profiles based on supine resting hemodynamics including PCWP and cardiac index (CI): Profile A (warm-dry) PCWP≤16mmHg, CI≥2.5L/min/m 2 ; Profile B (warm-wet) PCWP>16mmHg; CI≥2.5L/min/m 2 ; Profile C (cold-wet) PCWP>16mmHg; CI<2.5L/min/m 2 ; Profile L (cold-dry) PCWP≤16mmHg, CI<2.5L/min/m 2 . Results: Demographics are displayed in the table . Peak oxygen uptake (VO 2 ) was severely reduced in all participants ( figure 1 ). Throughout exercise, profile C and L patients had lower stroke volume and Qc, but higher (A-V)O2 difference than profiles A and B ( figure 2 ). Profile B and C patients had higher resting and exertional pulmonary arterial and PCWP filling pressures compared to profiles A and L. Conclusion: Exercise performance among HFrEF patients is not uniform. Exertional hemodynamics vary substantially based on HF profile.


Author(s):  
Hanna-Mari Tertsunen ◽  
Sari Hantunen ◽  
Tomi-Pekka Tuomainen ◽  
Jyrki K. Virtanen

Abstract Purpose To investigate the association between healthy Nordic diet and risk of type 2 diabetes (T2D) in middle-aged and older men from eastern Finland. Methods A total of 2332 men aged 42–60 years and free of T2D at baseline in 1984–1989 were included. Diet was assessed with 4-day food records at baseline and the healthy Nordic diet score was calculated based on a modified Baltic Sea Diet Score. T2D diagnosis was based on self-administered questionnaires, fasting and 2-h oral glucose tolerance test blood glucose measurements, or by record linkage to national health registries. Cox proportional hazards regression and analysis of covariance were used for analyses. Results During the mean follow-up of 19.3 years, 432 men (18.5%) were diagnosed with T2D. The multivariable-adjusted hazard ratio for T2D in the lowest vs. the highest quartile of the healthy Nordic diet score was 1.35 (95% CI 1.03–1.76) (P trend across quartiles 0.028). Lower adherence to healthy Nordic diet was also associated with higher plasma glucose and insulin concentrations. Conclusions In this prospective population-based cohort study among middle-aged and older men from eastern Finland, lower adherence to healthy Nordic diet was associated with higher risk of T2D and higher plasma glucose and serum insulin concentrations.


2020 ◽  
Vol 63 (6) ◽  
pp. 786-791 ◽  
Author(s):  
Ana Barbosa ◽  
João Brito ◽  
Júlio Costa ◽  
Pedro Figueiredo ◽  
André Seabra ◽  
...  

2012 ◽  
Vol 37 (4) ◽  
pp. 599-609 ◽  
Author(s):  
Oscar MacAnaney ◽  
Donal O’Shea ◽  
Stuart A. Warmington ◽  
Simon Green ◽  
Mikel Egaña

Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (VT), 80% VT, and mid-point between VT and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% VT (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% VT (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% VT; and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.


Author(s):  
Sean R. Notley ◽  
Ashley P. Akerman ◽  
Brian J. Friesen ◽  
Ronald J. Sigal ◽  
Andreas D. Flouris ◽  
...  

2020 ◽  
Vol 17 (11) ◽  
pp. 1091-1099
Author(s):  
Rodrigo Sudatti Delevatti ◽  
Ana Carolina Kanitz ◽  
Cláudia Gomes Bracht ◽  
Salime Donida Chedid Lisboa ◽  
Elisa Corrêa Marson ◽  
...  

Background: There are a lack of clinical trials with suitable methodological quality that compare aquatic exercise training types in type 2 diabetes (T2D) treatment. This study aimed to compare the effects of aerobic and combined aquatic training on cardiorespiratory outcomes in patients with T2D. Methods: Untrained patients with T2D were randomized to receive an aerobic aquatic training, a combined aquatic training, or a procedure control in 3 weekly sessions for 15 weeks. The sessions were 50 minutes long. The intensities were from 85% to 100% of heart rate of anaerobic threshold and at maximal velocity for aerobic and resistance parts, respectively. Resting heart rate, peak oxygen uptake (VO2peak), and oxygen uptake corresponding to second ventilatory threshold and its relation with VO2peak were evaluated. Results: Participants were 59.0 (8.2) years old and 51% women. Intervention groups increased in VO2peak (aerobic aquatic training group: 4.48 mL·kg−1·min−1, P = .004; combined aquatic training group: 5.27 mL·kg−1·min−1; P = .006) and oxygen uptake corresponding to second ventilatory threshold, whereas the control group presented an increase in oxygen uptake corresponding to second ventilatory threshold and minimal change in VO2peak. Conclusions: Aerobic and combined aquatic exercise interventions improve the cardiorespiratory fitness of patients with T2D.


Sign in / Sign up

Export Citation Format

Share Document