Effects of exercise training and sex on dynamic responses of O2 uptake in type 2 diabetes

2020 ◽  
Vol 45 (8) ◽  
pp. 865-874 ◽  
Author(s):  
Simon Green ◽  
Catherine Kiely ◽  
Eamonn O’Connor ◽  
Norita Gildea ◽  
Donal O’Shea ◽  
...  

Effects of training and sex on oxygen uptake dynamics during exercise in type 2 diabetes mellitus (T2DM) are not well established. We tested the hypotheses that exercise training improves the time constant of the primary phase of oxygen uptake (τp oxygen uptake) and with greater effect in males than females. Forty-one subjects with T2DM were assigned to 2 training groups (Tmale, Tfemale) and 2 control groups (Cmale, Cfemale), and were assessed before and after a 12-week intervention period. Twelve weeks of aerobic/resistance training was performed 3 times per week, 60–90 min per session. Assessments included ventilatory threshold (VT), peak oxygen uptake, τp oxygen uptake (80%VT), and dynamic responses of cardiac output, mean arterial pressure and systemic vascular conductance (80%VT). Training significantly decreased τp oxygen uptake in males by a mean of 20% (Tmale = 42.7 ± 6.2 to 34.3 ± 7.2 s) and females by a mean of 16% (Tfemale = 42.2 ± 9.3 to 35.4 ± 8.6 s); whereas τp oxygen uptake was not affected in controls (Cmale = 41.6 ± 9.8 to 42.9 ± 7.6 s; Cfemale = 40.4 ± 12.2 to 40.6 ± 13.4 s). Training increased peak oxygen uptake in both sexes (12%–13%) but did not alter systemic cardiovascular dynamics in either sex. Training improved oxygen uptake dynamics to a similar extent in males and females in the absence of changes in systemic cardiovascular dynamics. Novelty Similar training improvements in oxygen uptake dynamics were observed in males and females with T2DM. In both sexes these improvements occurred without changes in systemic cardiovascular dynamics.

2012 ◽  
Vol 303 (1) ◽  
pp. R70-R76 ◽  
Author(s):  
Eamonn O'Connor ◽  
Catherine Kiely ◽  
Donal O'Shea ◽  
Simon Green ◽  
Mikel Egaña

The present study tested the hypothesis that the magnitude of the type 2 diabetes-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics would be greater in females than males in middle-aged participants. Thirty-two individuals with type 2 diabetes (16 male, 16 female), and 32 age- and body mass index (BMI)-matched healthy individuals (16 male, 16 female) were recruited. Initially, the ventilatory threshold (VT) and peak V̇o2 were determined. On a separate day, subjects completed four 6-min bouts of constant-load cycling at 80% VT for the determination of V̇o2 kinetics using standard procedures. Cardiac output (CO) (inert gas rebreathing) was recorded at rest, 30, and 240 s during two additional bouts. Peak V̇o2 (ml·kg−1·min−1) was significantly reduced in men and women with type 2 diabetes compared with their respective nondiabetic counterparts (men, 27.8 ± 4.4 vs. 31.1 ± 6.2 ml·kg−1·min−1; women, 19.4 ± 4.1 vs. 21.4 ± 2.9 ml·kg−1·min−1). The time constant (s) of phase 2 (τ2) and mean response time (s) of the V̇o2 response (MRT) were slowed in women with type 2 diabetes compared with healthy women (τ2, 43.3 ± 9.8 vs. 33.6 ± 10.0 s; MRT, 51.7 ± 9.4 vs. 43.5 ± 11.4s) and in men with type 2 diabetes compared with nondiabetic men (τ2, 43.8 ± 12.0 vs. 35.3 ± 9.5 s; MRT, 57.6 ± 8.3 vs. 47.3 ± 9.3 s). The magnitude of these impairments was not different between males and females. The steady-state CO responses or the dynamic responses of CO were not affected by type 2 diabetes among men or women. The results suggest that the type 2 diabetes-induced impairments in peak V̇o2 and V̇o2 kinetics are not affected by sex in middle aged participants.


2015 ◽  
Vol 118 (8) ◽  
pp. 1031-1039 ◽  
Author(s):  
Eamonn O'Connor ◽  
Simon Green ◽  
Catherine Kiely ◽  
Donal O'Shea ◽  
Mikel Egaña

We investigated if the magnitude of the type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by age. Thirty-three men with T2D (15 middle-aged, 18 older), and 21 nondiabetic (ND) men (11 middle-aged, 10 older) matched by age were recruited. Participants completed four 6-min bouts of constant-load cycling at 80% ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (inert-gas rebreathing) was recorded at rest and 30 and 240 s during two additional bouts. Peak V̇o2 (determined from a separate graded test) was significantly ( P < 0.05) reduced in middle-aged and older men with T2D compared with their respective ND counterparts (middle-aged, 3.2 ± 0.5 vs. 2.5 ± 0.5 l/min; older, 2.7 ± 0.4 vs. 2.4 ± 0.4 l/min), and the magnitude of these impairments was not affected by age. However, the time constant of phase II of the V̇o2 response was only slowed ( P < 0.05) in middle-aged men with T2D compared with healthy counterparts, whereas it was similar among older men with and without T2D (middle-aged, 26.8 ± 9.3 vs. 41.6 ± 12.1 s; older, 40.5 ± 7.8 vs. 41.1 ± 8.5 s). Similarly, the “gains” in systemic vascular conductance (estimated from the slope between cardiac output and mean arterial pressure responses) were lower ( P < 0.05) in middle-aged men with T2D than ND controls, but similar between the older groups. The results suggest that the mechanisms by which T2D induces significant reductions in peak exercise performance are linked to a slower dynamic response of V̇o2 and reduced systemic vascular conductance responses in middle-aged men, whereas this is not the case in older men.


2015 ◽  
Vol 309 (8) ◽  
pp. R875-R883 ◽  
Author(s):  
Catherine Kiely ◽  
Joel Rocha ◽  
Eamonn O'Connor ◽  
Donal O'Shea ◽  
Simon Green ◽  
...  

We investigated if the magnitude of the Type 2 diabetes (T2D)-induced impairments in peak oxygen uptake (V̇o2) and V̇o2 kinetics was affected by menopausal status. Twenty-two women with T2D (8 premenopausal, 14 postmenopausal), and 22 nondiabetic (ND) women (11 premenopausal, 11 postmenopausal) matched by age (range = 30–59 yr) were recruited. Participants completed four bouts of constant-load cycling at 80% of their ventilatory threshold for the determination of V̇o2 kinetics. Cardiac output (CO) (inert gas rebreathing) was recorded at rest and at 30 s and 240 s during two additional bouts. Peak V̇o2 was significantly ( P < 0.05) reduced in both groups with T2D compared with ND counterparts (premenopausal, 1.79 ± 0.16 vs. 1.55 ± 0.32 l/min; postmenopausal, 1.60 ± 0.30 vs. 1.45 ± 0.24 l/min). The time constant of phase II of the V̇o2 response was slowed ( P < 0.05) in both groups with T2D compared with healthy counterparts (premenopausal, 29.1 ± 11.2 vs. 43.0 ± 12.2 s; postmenopausal, 33.0 ± 9.1 vs. 41.8 ± 17.7 s). At rest and during submaximal exercise absolute CO responses were lower, but the “gains” in CO larger (both P < 0.05) in both groups with T2D. Our results suggest that the magnitude of T2D-induced impairments in peak V̇o2 and V̇o2 kinetics is not affected by menopausal status in participants younger than 60 yr of age.


2020 ◽  
Vol 17 (11) ◽  
pp. 1091-1099
Author(s):  
Rodrigo Sudatti Delevatti ◽  
Ana Carolina Kanitz ◽  
Cláudia Gomes Bracht ◽  
Salime Donida Chedid Lisboa ◽  
Elisa Corrêa Marson ◽  
...  

Background: There are a lack of clinical trials with suitable methodological quality that compare aquatic exercise training types in type 2 diabetes (T2D) treatment. This study aimed to compare the effects of aerobic and combined aquatic training on cardiorespiratory outcomes in patients with T2D. Methods: Untrained patients with T2D were randomized to receive an aerobic aquatic training, a combined aquatic training, or a procedure control in 3 weekly sessions for 15 weeks. The sessions were 50 minutes long. The intensities were from 85% to 100% of heart rate of anaerobic threshold and at maximal velocity for aerobic and resistance parts, respectively. Resting heart rate, peak oxygen uptake (VO2peak), and oxygen uptake corresponding to second ventilatory threshold and its relation with VO2peak were evaluated. Results: Participants were 59.0 (8.2) years old and 51% women. Intervention groups increased in VO2peak (aerobic aquatic training group: 4.48 mL·kg−1·min−1, P = .004; combined aquatic training group: 5.27 mL·kg−1·min−1; P = .006) and oxygen uptake corresponding to second ventilatory threshold, whereas the control group presented an increase in oxygen uptake corresponding to second ventilatory threshold and minimal change in VO2peak. Conclusions: Aerobic and combined aquatic exercise interventions improve the cardiorespiratory fitness of patients with T2D.


2012 ◽  
Vol 37 (4) ◽  
pp. 599-609 ◽  
Author(s):  
Oscar MacAnaney ◽  
Donal O’Shea ◽  
Stuart A. Warmington ◽  
Simon Green ◽  
Mikel Egaña

Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (VT), 80% VT, and mid-point between VT and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% VT (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% VT (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% VT; and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.


Diabetes Care ◽  
1999 ◽  
Vol 22 (10) ◽  
pp. 1640-1646 ◽  
Author(s):  
S. L. Brandenburg ◽  
J. E. Reusch ◽  
T. A. Bauer ◽  
B. W. Jeffers ◽  
W. R. Hiatt ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 570
Author(s):  
Marina Yazigi Solis ◽  
Guilherme Giannini Artioli ◽  
Bruno Gualano

Creatine is one of the most popular supplements worldwide, and it is frequently used by both athletic and non-athletic populations to improve power, strength, muscle mass and performance. A growing body of evidence has been identified potential therapeutic effects of creatine in a wide variety of clinical conditions, such as cancer, muscle dystrophy and neurodegenerative disorders. Evidence has suggested that creatine supplementation alone, and mainly in combination with exercise training, may improve glucose metabolism in health individuals and insulin-resistant individuals, such as in those with type 2 diabetes mellitus. Creatine itself may stimulate insulin secretion in vitro, improve muscle glycogen stores and ameliorate hyperglycemia in animals. In addition, exercise induces numerous metabolic benefits, including increases in insulin-independent muscle glucose uptake and insulin sensitivity. It has been speculated that creatine supplementation combined with exercise training could result in additional improvements in glucose metabolism when compared with each intervention separately. The possible mechanism underlying the effects of combined exercise and creatine supplementation is an enhanced glucose transport into muscle cell by type 4 glucose transporter (GLUT-4) translocation to sarcolemma. Although preliminary findings from small-scale trials involving patients with type 2 diabetes mellitus are promising, the efficacy of creatine for improving glycemic control is yet to be confirmed. In this review, we aim to explore the possible therapeutic role of creatine supplementation on glucose management and as a potential anti-diabetic intervention, summarizing the current knowledge and highlighting the research gaps.


2017 ◽  
Vol 14 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Vibeke Bratseth ◽  
Rune Byrkjeland ◽  
Ida U Njerve ◽  
Svein Solheim ◽  
Harald Arnesen ◽  
...  

We investigated the effects of 12-month exercise training on hypercoagulability in patients with combined type 2 diabetes mellitus and coronary artery disease. Associations with severity of disease were further explored. Patients ( n = 131) were randomized to exercise training or a control group. Blood was collected at inclusion and after 12 months. Tissue factor, free and total tissue factor pathway inhibitor, prothrombin fragment 1 + 2 (F1 + 2) and D-dimer were determined by enzyme-linked immunosorbent assay and ex vivo thrombin generation by the calibrated automated thrombogram assay. Tissue factor and ex vivo thrombin generation increased from baseline to 12 months ( p < 0.01, all), with no significant differences in changes between groups. At baseline, free and total tissue factor pathway inhibitor significantly correlated to fasting glucose ( p < 0.01, both) and HbA1c ( p < 0.05, both). In patients with albuminuria ( n = 34), these correlations were strengthened, and elevated levels of D-dimer, free and total tissue factor pathway inhibitor ( p < 0.01, all) and decreased ex vivo thrombin generation ( p < 0.05, all) were observed. These results show no effects of exercise training on markers of hypercoagulability in our population with combined type 2 diabetes mellitus and coronary artery disease. The association between poor glycaemic control and tissue factor pathway inhibitor might indicate increased endothelial activation. More pronounced hypercoagulability and increased tissue factor pathway inhibitor were demonstrated in patients with albuminuria.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 529-529
Author(s):  
Amanda Randolph ◽  
Tatiana Moro ◽  
Adetutu Odejimi ◽  
Blake Rasmussen ◽  
Elena Volpi

Abstract Type 2 Diabetes Mellitus (T2DM) accelerates the incidence and increases the prevalence of sarcopenia in older adults. This suggests an urgent need for identifying effective sarcopenia treatments for older adults with T2DM. It is unknown whether traditional approaches, such as progressive resistance exercise training (PRET), can effectively counteract sarcopenia in older patients with T2DM. To test the efficacy of PRET for the treatment of sarcopenia in older adults with T2DM, 30 subjects (15 T2DM and 15 age- and sex- matched controls) underwent metabolic testing with muscle biopsies before and after a 13-week full-body PRET program. Primary outcome measures included changes in appendicular lean mass, muscle strength, and mixed muscle fractional synthesis rate (FSR). Before PRET, BMI-adjusted appendicular lean mass was significantly lower in the T2DM group (0.7095±0.0381 versus 0.8151±0.0439, p&lt;0.0001). As a result of PRET, appendicular lean mass adjusted for BMI and muscle strength increased significantly in both groups, but to a lesser extent for the T2DM group (p=0.0009) . Preliminary results for FSR (n=25) indicate that subjects with T2DM had lower basal FSR prior to PRET (p=0.0197) . Basal FSR increased significantly in the control group after PRET (p=0.0196), while it did not change in the T2DM group (p=0.3537). These results suggest that in older adults the positive effect of PRET on muscle anabolism and strength is reduced by T2DM . Thus, older adults with T2DM may require more intensive, multimodal and targeted sarcopenia treatment. Funded by NIH R01AG049611 and P30AG024832.


Sign in / Sign up

Export Citation Format

Share Document