Distinct Mechanisms of Presynaptic Inhibition at GABAergic Synapses of the Rat Substantia Nigra Pars Compacta

2005 ◽  
Vol 94 (3) ◽  
pp. 1992-2003 ◽  
Author(s):  
Michela Giustizieri ◽  
Giorgio Bernardi ◽  
Nicola B. Mercuri ◽  
Nicola Berretta

We investigated the mechanisms of presynaptic inhibition of GABAergic neurotransmission by group III metabotropic glutamate receptors (mGluRs) and GABAB receptors, in dopamine (DA) neurons of the substantia nigra pars compacta (SNc). Both the group III mGluRs agonist l-(+)-2-amino-4-phosphonobutyric acid (AP4, 100 μM) and the GABAB receptor agonist baclofen (10 μM) reversibly depressed the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) to 48.5 ± 2.7 and 79.3 ± 1.6% (means ± SE) of control, respectively. On the contrary, the frequency of action potential-independent miniature IPSCs (mIPSCs), recorded in tetrodotoxin (TTX, 1 μM) and cadmium (100 μM) were insensitive to AP4 but were reduced by baclofen to 49.7 ± 8.6% of control. When the contribution of voltage-dependent calcium channels (VDCCs) to synaptic transmission was boosted with external barium (1 mM), AP4 became effective in reducing TTX-resistant mIPSCs to 65.4 ± 3.9% of control, thus confirming a mechanism of presynaptic inhibition involving modulation of VDCCs. Differently from AP4, baclofen inhibited to 58.5 ± 6.7% of control the frequency mIPSCs recorded in TTX and the calcium ionophore ionomycin (2 μM), which promotes Ca2+-dependent, but VDCC-independent, transmitter release. Moreover, in the presence of α-latrotoxin (0.3 nM), to promote a Ca2+-independent vesicular release of GABA, baclofen reduced mIPSC frequency to 48.1 ± 3.2% of control, while AP4 was ineffective. These results indicate that group III mGluRs depress GABA release to DA neurons of the SNc through inhibition of presynaptic VDCCs, while presynaptic GABAB receptors directly impair transmitter exocytosis.

1999 ◽  
Vol 82 (4) ◽  
pp. 1974-1981 ◽  
Author(s):  
Ezia Guatteo ◽  
Nicola B. Mercuri ◽  
Giorgio Bernardi ◽  
Thomas Knöpfel

Metabotropic glutamate receptors modulate neuronal excitability via a multitude of mechanisms, and they have been implicated in the pathogenesis of neurodegenerative processes. Here we investigated the responses mediated by group I metabotropic glutamate receptors (mGluRs) in dopamine neurons of the rat substantia nigra pars compacta, using whole cell patch-clamp recordings in combination with microfluorometric measurements of [Ca2+]i and [Na+]i. The selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) was bath-applied (20 μM, 30 s to 2 min) or applied locally by means of short-lasting (2–4 s) pressure pulses, delivered through an agonist-containing pipette positioned close to the cell body of the neuron. 3,5-DHPG evoked an inward current characterized by a transient and a sustained component, the latter of which was uncovered only with long-lasting agonist applications. The fast component coincided with a transient elevation of [Ca2+]i, whereas the total current was associated with a rise in [Na+]i. These responses were not affected either by the superfusion of ionotropic excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and d-2-amino-5-phosphono-pentanoic acid (d-APV), nor by the sodium channel blocker tetrodotoxin (TTX). (S)-α-methyl-4-carboxyphenylglycine (S-MCPG) and the more selective mGluR1 antagonist 7(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (CPCCOEt) depressed both 3,5-DHPG–induced inward current components and, although less effectively, the associated [Ca2+]i elevations. On repeated agonist applications the inward current and the calcium transients both desensitized. The time constant of recovery from desensitization differed significantly between these two responses, being 67.4 ± 4.4 s for the inward current and 28.6 ± 2.7 s for the calcium response. Bathing the tissue in a calcium-free/EGTA medium or adding thapsigargin (1 μM) to the extracellular medium prevented the generation of the [Ca2+]i transient, but did not prevent the activation of the inward current. These electrophysiological and fluorometric results show that the 3,5-DHPG–induced inward current and the [Ca2+]i elevations are mediated by independent pathways downstream the activation of mGluR1.


2001 ◽  
Vol 85 (5) ◽  
pp. 1960-1968 ◽  
Author(s):  
Marion Wittmann ◽  
Michael J. Marino ◽  
Stefania Risso Bradley ◽  
P. Jeffrey Conn

The GABAergic projection neurons of the substantia nigra pars reticulata (SNr) exert an important influence on the initiation and control of movement. The SNr is a primary output nucleus of the basal ganglia (BG) and is controlled by excitatory inputs from the subthalamic nucleus (STN) and inhibitory inputs from the striatum and globus pallidus. Changes in the output of the SNr are believed to be critically involved in the development of a variety of movement disorders. Anatomical studies reveal that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the BG. Interestingly, mRNA for group III mGluRs are highly expressed in STN, striatum, and globus pallidus, and immunocytochemical studies have shown that the group III mGluR proteins are present in the SNr. Thus it is possible that group III mGluRs play a role in the modulation of synaptic transmission in this nucleus. We performed whole cell patch-clamp recordings from nondopaminergic SNr neurons to investigate the effect of group III mGluR activation on excitatory and inhibitory transmission in the SNr. We report that activation of group III mGluRs by the selective agonist l(+)-2-amino-4-phosphonobutyric acid (l-AP4, 100 μM) decreases inhibitory synaptic transmission in the SNr. Miniature inhibitory postsynaptic currents studies and paired-pulse studies reveal that this effect is mediated by a presynaptic mechanism. Furthermore we found that l-AP4 (500 μM) also reduces excitatory synaptic transmission at the STN-SNr synapse by action on presynaptically localized group III mGluRs. The finding that mGluRs modulate the major inputs to SNr neurons suggests that these receptors may play an important role in motor function and could provide new targets for the development of pharmacological treatments of movement disorders.


1998 ◽  
Vol 80 (4) ◽  
pp. 1932-1938 ◽  
Author(s):  
Gong Chen ◽  
Anthony N. van den Pol

Chen, Gong and Anthony N. van den Pol. Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J. Neurophysiol. 80: 1932–1938, 1998. Glutamate is the primary excitatory transmitter in axons innervating the hypothalamic suprachiasmatic nucleus (SCN) and is responsible for light-induced phase shifts of circadian rhythms generated by the SCN. By using self-innervating single neuron cultures and patch-clamp electrophysiology, we studied metabotropic glutamate receptors (mGluRs) expressed by SCN neurons. The selective agonists for group I (3,5-dihydroxy-phenylglycine), group II ((S)-4-carboxy-3-hydroxyphenylglycine), and group III (l(+)-2-amino-4-phosphonobutyric acid) mGluRs all depressed the evoked IPSC in a subset (33%) of single autaptic neurons, suggesting a coexpression of all three groups of mGluRs in the same axon terminals of a single neuron. Other neurons showed a variety of combinations of mGluRs, including an expression of only one group of mGluR (18%) or coexpression of two groups of mGluRs (27%). Some neurons had no response to any of the three agonists (22%). The three mGluR agonists had no effect on postsynaptic γ-aminobutyric acid (GABA) receptor responses, indicating a presynaptic modulation of GABA release by mGluRs. We conclude that multiple mGluRs that act through different second messenger pathways are coexpressed in single axon terminals of SCN neurons where they modulate the release of GABA presynaptically, usually inhibiting release.


1997 ◽  
Vol 77 (2) ◽  
pp. 527-527 ◽  
Author(s):  
L. A. Schrader ◽  
J. G. Tasker

Schrader, L. A. and J. G. Tasker. Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. J. Neurophysiol. 77: 527–536, 1997. The effects of activation of metabotropic glutamate receptors (mGluRs) on synaptic inputs to magnocellular neurons of the hypothalamic supraoptic nucleus (SON) were studied with the use of whole cell patch-clamp and microelectrode recordings in acute hypothalamic slices. Application of the mGluR agonist trans-(±)-1-amino-1,3-cyclopentane dicarboxylic acid ( trans-ACPD, 100 μM) elicited an increase in the frequency of spontaneous excitatory postsynaptic potentials (EPSPs) and excitatory postsynaptic currents (EPSCs) in 20% of the cells, and of spontaneous inhibitory postsynaptic potentials (IPSPs) and inhibitory postsynaptic currents (IPSCs) in 50% of the cells tested in normal medium. The increased frequency of spontaneous EPSPs/EPSCs and IPSPs/IPSCs was blocked by tetrodotoxin (TTX), indicating that mGluRs act to excite the somata/dendrites of presynaptic glutamatergic and GABAergic neurons. (RS)-3,5-dihydroxyphenylglycine (50 μM), a selective group I receptor agonist, mimicked the presynaptic somatic/dendritic effects of trans-ACPD, suggesting that the presynaptic somatic/dendritic receptors responsible for increased spike-dependent glutamate and γ-aminobutyric acid (GABA) release belong to the group I mGluRs. In the presence of TTX, trans-ACPD caused a decrease in the frequency of miniature EPSCs (up to 90%) in 13 of 16 cells, and a decrease in the frequency of miniature IPSCs (up to 80%) in 10 of 16 cells tested. Miniature EPSC and IPSC amplitudes usually did not change in trans-ACPD, suggesting that activation of metabotropic receptors located at presynaptic glutamatergic and GABAergic terminals led to a reduction in transmitter release onto SON magnocellular neurons. l(+)-2-amino-4-phosphonobutyric acid (100–250 μM), a selective group III receptor agonist, mimicked the effects of trans-ACPD at presynaptic terminals, decreasing the frequency of miniature EPSCs and IPSCs by up to 85% without affecting their amplitude. Thus the metabotropic receptors at presynaptic glutamate and GABA terminals in the SON belong to group III mGluRs. EPSCs evoked by electrical stimulation were enhanced by the group III receptor antagonist (S)-2-amino-2-methyl-4-phosphonobutanoic acid, suggesting that presynaptic metabotropic receptors are activated by the release of endogenous glutamate. These data indicate that mGluRs in the hypothalamus have opposing actions at presynaptic somata/dendrites and at presynaptic terminals. Activation of group I receptors (mGluR1 and/or mGluR5) on presynaptic somata/dendrites led to an increase in spike-dependent transmitter release, whereas activation of the group III receptors (mGluR4, 7, and/or 8) on presynaptic terminals suppressed glutamate and GABA release onto SON neurons. No diffferences were seen in the effects of mGluR activation between immunohistochemically identified oxytocin and vasopressin neurons of the SON.


Sign in / Sign up

Export Citation Format

Share Document