The strength of the corticospinal coherence depends on the predictability of modulated isometric forces

2013 ◽  
Vol 109 (6) ◽  
pp. 1579-1588 ◽  
Author(s):  
Ignacio Mendez-Balbuena ◽  
Jose Raul Naranjo ◽  
Xi Wang ◽  
Agnieska Andrykiewicz ◽  
Frank Huethe ◽  
...  

Isometric compensation of predictably frequency-modulated low forces is associated with corticomuscular coherence (CMC) in beta and low gamma range. It remains unclear how the CMC is influenced by unpredictably modulated forces, which create a mismatch between expected and actual sensory feedback. We recorded electroencephalography from the contralateral hand motor area, electromyography (EMG), and the motor performance of 16 subjects during a visuomotor task in which they had to isometrically compensate target forces at 8% of the maximum voluntary contraction with their right index finger. The modulated forces were presented with predictable or unpredictable frequencies. We calculated the CMC, the cortical motor alpha-, beta-, and gamma-range spectral powers (SP), and the task-related desynchronization (TRD), as well as the EMG SP and the performance. We found that in the unpredictable condition the CMC was significantly lower and associated with lower cortical motor SP, stronger TRD, higher EMG SP, and worse performance. The findings suggest that due to the mismatch between predicted and actual sensory feedback leading to higher computational load and less stationary motor state, the unpredictable modulation of the force leads to a decrease in corticospinal synchrony, an increase in cortical and muscle activation, and a worse performance.

2017 ◽  
Vol 4 (8) ◽  
pp. 170660 ◽  
Author(s):  
Sam Darvishi ◽  
Michael C. Ridding ◽  
Brenton Hordacre ◽  
Derek Abbott ◽  
Mathias Baumert

Restorative brain–computer interfaces (BCIs) have been proposed to enhance stroke rehabilitation. Restorative BCIs are able to close the sensorimotor loop by rewarding motor imagery (MI) with sensory feedback. Despite the promising results from early studies, reaching clinically significant outcomes in a timely fashion is yet to be achieved. This lack of efficacy may be due to suboptimal feedback provision. To the best of our knowledge, the optimal feedback update interval (FUI) during MI remains unexplored. There is evidence that sensory feedback disinhibits the motor cortex. Thus, in this study, we explore how shorter than usual FUIs affect behavioural and neurophysiological measures following BCI training for stroke patients using a single-case proof-of-principle study design. The action research arm test was used as the primary behavioural measure and showed a clinically significant increase (36%) over the course of training. The neurophysiological measures including motor evoked potentials and maximum voluntary contraction showed distinctive changes in early and late phases of BCI training. Thus, this preliminary study may pave the way for running larger studies to further investigate the effect of FUI magnitude on the efficacy of restorative BCIs. It may also elucidate the role of early and late phases of motor learning along the course of BCI training.


2018 ◽  
Vol 120 (4) ◽  
pp. 2059-2065
Author(s):  
Stefan Delmas ◽  
Agostina Casamento-Moran ◽  
Seoung Hoon Park ◽  
Basma Yacoubi ◽  
Evangelos A. Christou

Reaction time (RT) is the time interval between the appearance of a stimulus and initiation of a motor response. Within RT, two processes occur, selection of motor goals and motor planning. An unresolved question is whether perturbation to the motor planning component of RT slows the response and alters the voluntary activation of muscle. The purpose of this study was to determine how the modulation of muscle activity during an RT response changes with motor plan perturbation. Twenty-four young adults (20.5 ±1.1 yr, 13 women) performed 15 trials of an isometric RT task with ankle dorsiflexion using a sinusoidal anticipatory strategy (10–20% maximum voluntary contraction). We compared the processing part of the RT and modulation of muscle activity from 10 to 60 Hz of the tibialis anterior (primary agonist) when the stimulus appeared at the trough or at the peak of the sinusoidal task. We found that RT ( P = 0.003) was longer when the stimulus occurred at the peak compared with the trough. During the time of the reaction, the electromyography (EMG) power from 10 to 35 Hz was less at the peak than the trough ( P = 0.019), whereas the EMG power from 35 to 60 Hz was similar between the peak and trough ( P = 0.92). These results suggest that perturbation to motor planning lengthens the processing part of RT and alters the voluntary activation of the muscle by decreasing the relative amount of power from 10 to 35 Hz. NEW & NOTEWORTHY We aimed to determine whether perturbation to motor planning would alter the speed and muscle activity of the response. We compared trials when a stimulus appeared at the peak or trough of an oscillatory reaction time task. When the stimulus occurred at the trough, participants responded faster, with greater force, and less EMG power from 10-35 Hz. We provide evidence that motor planning perturbation slows the response and alters the voluntary activity of the muscle.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 141
Author(s):  
Nursalbiah Nasir ◽  
Asyraf Hakimi Azmi ◽  
Helmi Rashid

This study investigated the difference in muscle activation of the muscles in right handed (RH) and left handed (LH) participants during riding of motorcycle simulator. Five participants (3 RH and 2 LH) with average age of 24.2±0.447 years old were recruited and they were requested to ride the simulator for certain period of times for three days. Two surface electromyogram (sEMG) electrodes were attached to right flexor carpi radialis (RFCR) and left flexor carpi radialis (LFCR) of the participants forearm. Electromyography (EMG) of flexor carpi radialis (FCR) are measured at both hands during the task. The results showed that muscle activation during first 5 minutes of riding task in day 1 of experiment (percentage of maximum voluntary contraction, %MVC) for RFCR in LH (non-dominant) participants was 97.4% and 87.7% in RH (dominant) participants. Therefore, this result indicates that non-dominant person needs to activate more muscle than RH person during control the accelerator throttle while riding.  


2001 ◽  
Vol 26 (3) ◽  
pp. 262-272 ◽  
Author(s):  
David G. Behm ◽  
Duane C. Button ◽  
Jeremy C. Butt

The purpose of this study was to investigate factors underlying the force loss occurring after prolonged, static, passive stretching. Subjects were tested before and 5-10 min following 20 min of static, passive stretching of the quadriceps (N = 12) or a similar period of no stretch (control, N = 6). Measurements included isometric maximal voluntary contraction (MVC) force, surface integrated electromyographic (iEMG) activity of the quadriceps and hamstrings, evoked contractile properties (twitch and tetanic force), and quadriceps inactivation as measured by the interpolated twitch technique (ITT). Following stretching, there was a significant 12% decrement in MVC with no significant changes in the control group. Muscle inactivation as measured by the ITT and iEMG increased by 2.8% and 20.2%, respectively. While twitch forces significantly decreased 11.7%, there was no change in tetanic force post-stretch. Although possible increases in muscle compliance affected twitch force, a lack of tetanic force change would suggest that post-stretch force decrements are more affected by muscle inactivation than changes in muscle elasticity. Key Words: antagonist, electromyography, maximum voluntary contraction, muscle activation, twitch, tetanus


2009 ◽  
Vol 102 (2) ◽  
pp. 1115-1120 ◽  
Author(s):  
Vihren Chakarov ◽  
José Raúl Naranjo ◽  
Jürgen Schulte-Mönting ◽  
Wolfgang Omlor ◽  
Frank Huethe ◽  
...  

Corticomuscular synchronization has been shown to occur in beta (15–30 Hz) and gamma range (30–45 Hz) during isometric compensation of static and dynamic (periodically modulated) low-level forces, respectively. However, it is still unknown to what extent these synchronization processes in beta and gamma range are modified with increasing modulated force. We addressed this question by investigating the corticomuscular coherence (CMC) between the electroencephalogram (EEG) and electromyogram (EMG) from the first dorsal interosseus muscle (FDI) as well as the cortical and muscular spectral power during a visuomotor task where different levels of a dynamic (modulated) force were used. Seven healthy right-handed female subjects compensated dynamic forces at 8, 16, and 24% of the maximal voluntary contraction (MVC) isometrically with their right index finger. Under the three conditions investigated, we found a broad-band CMC comprising both beta and gamma range and peaking at ∼22 Hz within the beta band. This broad-band coherence increased linearly with higher force level. A separate analysis of the gamma range CMC did not show significant modulation of the CMC by the force levels. EEG and EMG spectral power did not show any significant difference among the three force conditions. Our results favor the view that the function of beta range CMC is not specific for low-level static forces only. The sensorimotor system may resort to stronger and also broader beta-range CMC to generate stable corticospinal interaction during increased force level, as well as when compensating for dynamic modulated forces. This finding re-enforces the importance of the beta-range EEG-EMG coherence in sensorimotor integration.


1998 ◽  
Vol 84 (1) ◽  
pp. 284-291 ◽  
Author(s):  
Sophie J. De Serres ◽  
Roger M. Enoka

De Serres, Sophie J., and Roger M. Enoka. Older adults can maximally activate the biceps brachii muscle by voluntary command. J. Appl. Physiol. 84(1): 284–291, 1998.—Because some of the decline in strength with age may be explained by an impairment of muscle activation, the purpose of this study was to determine the activation level achieved in biceps brachii by older adults during a maximum voluntary contraction (MVC). This capability was assessed with two superimposition techniques: one calculated the activation level that was achieved during an MVC, and the other provided an estimate of the expected MVC force based on extrapolation with submaximal forces. The activation level in biceps brachii was incomplete (<100%) for the young ( n = 16) and elderly ( n = 16) subjects, with the elderly subjects exhibiting the greater deficit. In contrast, there was no difference between the measured and expected MVC forces for either group of subjects, whether the extrapolation involved a third-order polynomial or linearization of the data. Because of the lower signal-to-noise ratio associated with the measurement of activation level and the greater number of measurements that contributed to the estimate of the expected MVC force, we conclude that the older adults were able to achieve complete activation of the biceps brachii muscle during an MVC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256656
Author(s):  
Giuseppe Coratella ◽  
Stefano Longo ◽  
Susanna Rampichini ◽  
Christian Doria ◽  
Marta Borrelli ◽  
...  

The current study aimed to verify whether or not passive static stretching affects balance control capacity. Thirty-eight participants (19 women and 19 men) underwent a passive static stretching session, involving the knee extensor/flexor and dorsi/plantarflexor muscles, and a control session (no stretching, CTRL). Before (PRE), immediately after (POST), after 15 (POST15) and 30 min (POST30) from stretching (or rest in CTRL), balance control was evaluated under static and dynamic conditions, with open/closed eyes, and with/without somatosensory perturbation (foam under the feet). During tests, centre of pressure (CoP) sway area and perimeter and antero-posterior and medio-lateral sway mean speed were computed. Surface electromyography root mean square (sEMG RMS) was calculated from the vastus lateralis, biceps femoris, gastrocnemius medialis, and tibialis anterior muscles during MVC and during the balance tests. Hip flexion/extension and dorsi/plantarflexion range of motion (ROM), maximum voluntary contraction (MVC) and sEMG RMS during MVC were measured at the same time points. After stretching, ROM increased (≈6.5%; P<0.05), while MVC and sEMG RMS decreased (≈9% and ≈7.5%, respectively; P<0.05). Regardless of the testing condition, CoP sway area and the perimeter remained similar, while antero-posterior and medio-lateral sway mean speed decreased by ≈8% and ≈12%, respectively (P<0.05). sEMG RMS during the balance tests increased in all muscles in POST (≈7%, P<0.05). All variables recovered in POST30. No changes occurred in CTRL. Passive static stretching did not affect the overall balance control ability. However, greater muscle activation was required to maintain similar CoP sway, thus suggesting a decrease in muscle efficiency.


2020 ◽  
pp. 1-6
Author(s):  
Allison L. Kinney ◽  
Matthew Giel ◽  
Brady Harre ◽  
Kyle Heffner ◽  
Timothy McCullough ◽  
...  

Context: Tasks that activate the lateral trunk muscles are clinically relevant in athletic and rehabilitation programs. However, no electromyography studies have compared tasks aimed at lateral trunk muscle activation. Objective: To compare the activation magnitudes of the internal and external obliques between 4 tasks targeting recruitment of the lateral trunk muscles, including the proposal of a novel assessment. Design: Comparative laboratory study. Setting: University-based biomechanics laboratory. Participants: Sixty-three participants (35 females, age = 23.6 [2.0] y, height = 1.72 [0.10] m, mass = 70.7 [14.4] kg, body mass index = 23.6 [2.86] kg/m2). Intervention(s): Surface electromyography data were recorded bilaterally from the internal and external obliques while the participants performed 2 maximum voluntary contraction tasks followed by 4 isometric tasks. The isometric tasks included feet-elevated side-supported, trunk-elevated side-unsupported, lateral plank, and side-lying hip abduction. Main Outcome Measures: Maximum voluntary contraction-normalized and integrated muscle activities were calculated for targeted and nontargeted muscles in each task. A side-by-task analysis of variance with Bonferroni correction was conducted. Results: The trunk-elevated side-unsupported task strongly activated the internal (199% maximum voluntary contraction) and external (103%) oblique muscles. The feet-elevated side-supported task strongly activated the internal obliques (205%) but not the external obliques (55%). The lateral plank task successfully activated the internal (107%) and external (72%) obliques, but not at the highest levels of the tested tasks. The side-lying hip abduction task was the least effective at activating either the internal (48%) or external (20%) obliques. Conclusions: We recommend the novel trunk-elevated side-unsupported task for assessing lateral trunk muscle performance. For independent exercise, we recommend the lateral plank task, unless arm or shoulder pathologies are present, whereby the feet-elevated side-supported task may be favorable.


1997 ◽  
Vol 82 (5) ◽  
pp. 1654-1661 ◽  
Author(s):  
D. G. Behm ◽  
D. M. M. St-Pierre

Behm, D. G., and D. M. M. St-Pierre. Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J. Appl. Physiol. 82(5): 1654–1661, 1997.—The effects of fatigue duration and muscle type on voluntary and evoked contractile properties were investigated with an isometric, intermittent, submaximal fatigue protocol. Four groups performed contractions of the plantar flexors and quadriceps at various intensities to produce long (LDF; 19 min 30 s)- and short-duration fatigue (SDF; 4 min 17 s). The LDF group had a significantly greater decrease in muscle activation than did the SDF group (12 vs. 5.8%) during recovery, although there was no difference in the impairment of maximum voluntary contraction force beyond 30 s of recovery. The significant decrease in the compound muscle action potential of the LDF group (M-wave amplitude; 14.7%) contrasted with the M-wave potentiation of the SDF group (15.7%), suggesting changes in membrane excitation may affect LDF. The quadriceps group performing contractions at 50% MVC experienced a smaller decrease in agonist electromyograph activity than did other groups, indicating both muscle and fatigue duration specificity. Impairments in excitation-contraction coupling were indicated by changes in quadriceps peak twitch and time to peak twitch while decreases in PF M-wave amplitudes suggested a disruption of membrane potentials. Results suggest that fatigue mechanisms may be duration (activation, half relaxation time) or muscle specific (electromyograph, twitch torque) or a combination of both (M wave, time to peak twitch torque).


Sign in / Sign up

Export Citation Format

Share Document