Effects of fatigue duration and muscle type on voluntary and evoked contractile properties

1997 ◽  
Vol 82 (5) ◽  
pp. 1654-1661 ◽  
Author(s):  
D. G. Behm ◽  
D. M. M. St-Pierre

Behm, D. G., and D. M. M. St-Pierre. Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J. Appl. Physiol. 82(5): 1654–1661, 1997.—The effects of fatigue duration and muscle type on voluntary and evoked contractile properties were investigated with an isometric, intermittent, submaximal fatigue protocol. Four groups performed contractions of the plantar flexors and quadriceps at various intensities to produce long (LDF; 19 min 30 s)- and short-duration fatigue (SDF; 4 min 17 s). The LDF group had a significantly greater decrease in muscle activation than did the SDF group (12 vs. 5.8%) during recovery, although there was no difference in the impairment of maximum voluntary contraction force beyond 30 s of recovery. The significant decrease in the compound muscle action potential of the LDF group (M-wave amplitude; 14.7%) contrasted with the M-wave potentiation of the SDF group (15.7%), suggesting changes in membrane excitation may affect LDF. The quadriceps group performing contractions at 50% MVC experienced a smaller decrease in agonist electromyograph activity than did other groups, indicating both muscle and fatigue duration specificity. Impairments in excitation-contraction coupling were indicated by changes in quadriceps peak twitch and time to peak twitch while decreases in PF M-wave amplitudes suggested a disruption of membrane potentials. Results suggest that fatigue mechanisms may be duration (activation, half relaxation time) or muscle specific (electromyograph, twitch torque) or a combination of both (M wave, time to peak twitch torque).

2007 ◽  
Vol 32 (6) ◽  
pp. 1043-1051 ◽  
Author(s):  
Eric J. Drinkwater ◽  
David G. Behm

The purpose of this study was to investigate the effect of 22 °C local muscle temperature of intact human plantar flexors performing fatiguing contractions on evoked and voluntary contractile properties before and after fatigue. Twelve subjects were tested on plantar flexor voluntary torque, percent muscle activation derived from twitch interpolation, integrated electromyographic (iEMG) activity, and evoked torque and temporal characteristics of maximal twitch and tetanic stimulations before fatigue and 1, 5, and 10 min after intermittent, high-intensity, isometric fatigue under both normothermic and hypothermic conditions. Hypothermic and normothermic changes between time points were analysed by repeated-measures analysis of variance. Normothermic fatigue induced small to large effects (Cohen’s d: 0.29–3.06) on voluntary and evoked contractile properties, whereas most effects of unfatigued hypothermia were limited to rate-dependent processes (Cohen’s d: 0.78–1.70). Most tetanic properties were potentiated 1 min after normothermic fatigue, but remained unchanged by hypothermic fatigue, resulting in significant differences between the two conditions. Soleus iEMG significantly declined 1 min after normothermic fatigue (–29%), but not after hypothermic fatigue. Twitch torque was potentiated by 29% one minute after fatigue while normothermic, but was potentiated by 46% while hypothermic; rate of twitch torque development and time to peak twitch were potentiated by 39% and 10% while normothermic, but 89% and 28% while hypothermic. Although voluntary contractile properties are generally impaired soon after normothermic fatigue, most were not after hypothermic fatigue. Furthermore, evoked contractile properties were generally higher 1 min after hypothermic fatigue. We conclude that the hypothermic condition slows the recovery of potentiated evoked contractile properties back to baseline values.


1995 ◽  
Vol 78 (3) ◽  
pp. 847-855 ◽  
Author(s):  
A. J. Fuglevand ◽  
M. Bilodeau ◽  
R. M. Enoka

The purpose of this study was to determine the association between reduced fatigability typically observed in disused muscle and an improved resistance to the impairment of neuromuscular propagation. Endurance time of an isometric contraction sustained at 35% of maximum voluntary contraction (MVC) force and the fatigue-induced change in the evoked compound muscle action potential (M wave) were measured in the first dorsal interosseus muscle of human subjects before, during, and after 3 (n = 9) or 5 wk (n = 2) of immobilization. The immobilization procedure caused a substantial decline in the chronic electromyographic (EMG) activity (to 4% of control value) of the first dorsal interosseus muscle. Endurance time was found to be significantly correlated to the maintenance of M-wave amplitude during the fatigue task. However, neither of these variables was significantly affected by immobilization. Also, immobilization had no significant effect on the prefatigue values of MVC force and EMG or twitch contraction time or on the postfatigue changes in MVC force and EMG, M wave duration, twitch amplitude, and contraction time. In the unfatigued muscle, immobilization did cause an increase in twitch force (153%) and a decrease in M-wave amplitude (67%). It appears, therefore, that a healthy first dorsal interosseus muscle is generally resistant to adaptation when its use has been reduced for 3–5 wk by immobilization.


2020 ◽  
Vol 10 (7) ◽  
pp. 433
Author(s):  
Cécilia Neige ◽  
Sidney Grosprêtre ◽  
Alain Martin ◽  
Florent Lebon

Short-interval intracortical inhibition (SICI) represents an inhibitory phenomenon acting at the cortical level. However, SICI estimation is based on the amplitude of a motor-evoked potential (MEP), which depends on the discharge of spinal motoneurones and the generation of compound muscle action potential (M-wave). In this study, we underpin the importance of taking into account the proportion of spinal motoneurones that are activated or not when investigating the SICI of the right flexor carpi radialis (normalization with maximal M-wave (Mmax) and MEPtest, respectively), in 15 healthy subjects. We probed SICI changes according to various MEPtest amplitudes that were modulated actively (four levels of muscle contraction: rest, 10%, 20% and 30% of maximal voluntary contraction (MVC)) and passively (two intensities of test transcranial magnetic stimulation (TMS): 120 and 130% of motor thresholds). When normalized to MEPtest, SICI remained unchanged by stimulation intensity and only decreased at 30% of MVC when compared with rest. However, when normalized to Mmax, we provided the first evidence of a strong individual relationship between SICI and MEPtest, which was ultimately independent from experimental conditions (muscle states and TMS intensities). Under similar experimental conditions, it is thus possible to predict SICI individually from a specific level of corticospinal excitability in healthy subjects.


1989 ◽  
Vol 67 (5) ◽  
pp. 1835-1842 ◽  
Author(s):  
C. K. Thomas ◽  
J. J. Woods ◽  
B. Bigland-Ritchie

With fatigue, force generation may be limited by several factors, including impaired impulse transmission and/or reduced motor drive. In 5-min isometric maximal voluntary contraction, no decline was seen in the peak amplitude of the tibialis anterior compound muscle mass action potential (M wave) either during or immediately after the voluntary effort, provided maximal nerve stimulation was retained. For first dorsal interosseous (FDI) muscle, M wave amplitudes declined by 19.4 +/- 1.6% during the first 2 min but did not change significantly thereafter, despite the continued force reduction (up to 94% in 5 min for both muscles). The duration of the FDI M waves increased (greater than 30%), suggesting that the small decline in amplitude was the result of increased dispersion between the responses of different motor units. Some subjects kept FDI maximally activated throughout, but when they used tibialis anterior, twitch occlusion and tetanic muscle stimulation showed that most subjects were usually only able to do so for the first 60 s and thereafter only during brief “extra efforts.” Thus force loss during isometric voluntary contractions sustained at the highest intensities results mainly from failure of processes within the muscle fibers.


2005 ◽  
Vol 99 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Malgorzata Klass ◽  
Stéphane Baudry ◽  
Jacques Duchateau

This study examines the age-related deficit in force of the ankle dorsiflexors during isometric (Iso), concentric (Con), and eccentric (Ecc) contractions. More specifically, the contribution of neural and muscular mechanisms to the loss of voluntary force was investigated in men and women. The torque produced by the dorsiflexors and the surface electromyogram (EMG) from the tibialis anterior and the soleus were recorded during maximal Iso contractions and during Con and Ecc contractions performed at constant angular velocities (5–100°/s). Central activation was tested by the superimposed electrical stimulation method during maximal voluntary contraction and by computing the ratio between voluntary average EMG and compound muscle action potential (M wave) induced by electrical stimulation (average EMG/M wave). Contractile properties of the dorsiflexor muscles were investigated by recording the mechanical responses to single and paired maximal stimuli. The results showed that the age-related deficit in force (collapsed across genders and velocities) was greater for Iso (20.5%; P < 0.05) and Con (38.6%; P < 0.001) contractions compared with Ecc contractions (6.5%; P > 0.05). When the torque produced during Con and Ecc contractions was expressed relative to the maximal Iso torque, it was significantly reduced in Con contractions and increased in Ecc contractions with aging, with the latter effect being more pronounced for women. In both genders, voluntary activation was not significantly impaired in elderly adults and did not differ from young subjects. Similarly, coactivation was not changed with aging. In contrast, the mechanical responses to single and paired stimuli showed a general slowing of the muscle contractile kinetics with a slightly greater effect in women. It is concluded that the force deficit during Con and Iso contractions of the ankle dorsiflexors in advanced age cannot be explained by impaired voluntary activation or changes in coactivation. Instead, this age-related adaptation and the mechanisms that preserve force in Ecc contractions appeared to be located at the muscular level.


2013 ◽  
Vol 109 (6) ◽  
pp. 1579-1588 ◽  
Author(s):  
Ignacio Mendez-Balbuena ◽  
Jose Raul Naranjo ◽  
Xi Wang ◽  
Agnieska Andrykiewicz ◽  
Frank Huethe ◽  
...  

Isometric compensation of predictably frequency-modulated low forces is associated with corticomuscular coherence (CMC) in beta and low gamma range. It remains unclear how the CMC is influenced by unpredictably modulated forces, which create a mismatch between expected and actual sensory feedback. We recorded electroencephalography from the contralateral hand motor area, electromyography (EMG), and the motor performance of 16 subjects during a visuomotor task in which they had to isometrically compensate target forces at 8% of the maximum voluntary contraction with their right index finger. The modulated forces were presented with predictable or unpredictable frequencies. We calculated the CMC, the cortical motor alpha-, beta-, and gamma-range spectral powers (SP), and the task-related desynchronization (TRD), as well as the EMG SP and the performance. We found that in the unpredictable condition the CMC was significantly lower and associated with lower cortical motor SP, stronger TRD, higher EMG SP, and worse performance. The findings suggest that due to the mismatch between predicted and actual sensory feedback leading to higher computational load and less stationary motor state, the unpredictable modulation of the force leads to a decrease in corticospinal synchrony, an increase in cortical and muscle activation, and a worse performance.


2018 ◽  
Vol 120 (4) ◽  
pp. 2059-2065
Author(s):  
Stefan Delmas ◽  
Agostina Casamento-Moran ◽  
Seoung Hoon Park ◽  
Basma Yacoubi ◽  
Evangelos A. Christou

Reaction time (RT) is the time interval between the appearance of a stimulus and initiation of a motor response. Within RT, two processes occur, selection of motor goals and motor planning. An unresolved question is whether perturbation to the motor planning component of RT slows the response and alters the voluntary activation of muscle. The purpose of this study was to determine how the modulation of muscle activity during an RT response changes with motor plan perturbation. Twenty-four young adults (20.5 ±1.1 yr, 13 women) performed 15 trials of an isometric RT task with ankle dorsiflexion using a sinusoidal anticipatory strategy (10–20% maximum voluntary contraction). We compared the processing part of the RT and modulation of muscle activity from 10 to 60 Hz of the tibialis anterior (primary agonist) when the stimulus appeared at the trough or at the peak of the sinusoidal task. We found that RT ( P = 0.003) was longer when the stimulus occurred at the peak compared with the trough. During the time of the reaction, the electromyography (EMG) power from 10 to 35 Hz was less at the peak than the trough ( P = 0.019), whereas the EMG power from 35 to 60 Hz was similar between the peak and trough ( P = 0.92). These results suggest that perturbation to motor planning lengthens the processing part of RT and alters the voluntary activation of the muscle by decreasing the relative amount of power from 10 to 35 Hz. NEW & NOTEWORTHY We aimed to determine whether perturbation to motor planning would alter the speed and muscle activity of the response. We compared trials when a stimulus appeared at the peak or trough of an oscillatory reaction time task. When the stimulus occurred at the trough, participants responded faster, with greater force, and less EMG power from 10-35 Hz. We provide evidence that motor planning perturbation slows the response and alters the voluntary activity of the muscle.


Sign in / Sign up

Export Citation Format

Share Document