Surface Electromyography of the Internal and External Oblique Muscles During Isometric Tasks Targeting the Lateral Trunk

2020 ◽  
pp. 1-6
Author(s):  
Allison L. Kinney ◽  
Matthew Giel ◽  
Brady Harre ◽  
Kyle Heffner ◽  
Timothy McCullough ◽  
...  

Context: Tasks that activate the lateral trunk muscles are clinically relevant in athletic and rehabilitation programs. However, no electromyography studies have compared tasks aimed at lateral trunk muscle activation. Objective: To compare the activation magnitudes of the internal and external obliques between 4 tasks targeting recruitment of the lateral trunk muscles, including the proposal of a novel assessment. Design: Comparative laboratory study. Setting: University-based biomechanics laboratory. Participants: Sixty-three participants (35 females, age = 23.6 [2.0] y, height = 1.72 [0.10] m, mass = 70.7 [14.4] kg, body mass index = 23.6 [2.86] kg/m2). Intervention(s): Surface electromyography data were recorded bilaterally from the internal and external obliques while the participants performed 2 maximum voluntary contraction tasks followed by 4 isometric tasks. The isometric tasks included feet-elevated side-supported, trunk-elevated side-unsupported, lateral plank, and side-lying hip abduction. Main Outcome Measures: Maximum voluntary contraction-normalized and integrated muscle activities were calculated for targeted and nontargeted muscles in each task. A side-by-task analysis of variance with Bonferroni correction was conducted. Results: The trunk-elevated side-unsupported task strongly activated the internal (199% maximum voluntary contraction) and external (103%) oblique muscles. The feet-elevated side-supported task strongly activated the internal obliques (205%) but not the external obliques (55%). The lateral plank task successfully activated the internal (107%) and external (72%) obliques, but not at the highest levels of the tested tasks. The side-lying hip abduction task was the least effective at activating either the internal (48%) or external (20%) obliques. Conclusions: We recommend the novel trunk-elevated side-unsupported task for assessing lateral trunk muscle performance. For independent exercise, we recommend the lateral plank task, unless arm or shoulder pathologies are present, whereby the feet-elevated side-supported task may be favorable.

Author(s):  
Yuki Kurokawa ◽  
Satoshi Kato ◽  
Satoru Demura ◽  
Kazuya Shinmura ◽  
Noriaki Yokogawa ◽  
...  

BACKGROUND: Abdominal bracing is effective in strengthening the trunk muscles; however, assessing performance can be challenging. We created a device for performing abdominal trunk muscle exercises. The effectiveness of this device has not yet been evaluated or compared OBJECTIVE: We aimed to quantify muscle activity levels during exercise using our innovative device and to compare them with muscle activation during abdominal bracing maneuvers. METHODS: This study included 10 men who performed abdominal bracing exercises and exercises using our device. We measured surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique, internal oblique (IO), and erector spinae (ES) muscles in each of the exercises. The EMG data were normalized to those recorded during maximal voluntary contraction (%EMGmax). RESULTS: During the bracing exercise, the %EMGmax of IO was significantly higher than that of RA and ES (p< 0.05), whereas during the exercises using the device, the %EMGmax of IO was significantly higher than that of ES (p< 0.05). No significant difference was observed in the %EMGmax of any muscle between bracing exercises and the exercises using the device (p= 0.13–0.95). CONCLUSIONS: The use of our innovative device results in comparable activation to that observed during abdominal bracing.


2009 ◽  
Vol 34 (6) ◽  
pp. 1008-1016 ◽  
Author(s):  
David G. Behm ◽  
Dario Cappa ◽  
Geoffrey A. Power

Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.


2020 ◽  
Vol 29 (1) ◽  
pp. 73-78 ◽  
Author(s):  
Billy Chun-Lung So ◽  
Calvin Hong-Nin Yuen ◽  
Ken Long-Hin Tung ◽  
Sheena Lam ◽  
Sammy Lan Cheng ◽  
...  

Context: Deep water running (DWR) is an aquatic aerobic exercise which involves running in water without the feet touching the bottom of the pool, and it may involve different activation of trunk muscles compared with running or walking on land. This form of exercise is gradually being adopted as a form of therapeutic exercise for people with low back pain. It is proposed that different types of running or walking in water may be a more comfortable form of training for the trunk and abdominal muscles compared with exercising on dry land. Objectives: This study aimed to examine the trunk muscle activation in DWR in 2 different styles—high knee style and cross-country style, and these were compared with walking on land. Participants: Eleven healthy individuals (2 females and 9 males, mean age = 24 [4.6]) were recruited for this study. Outcome Measures: Surface electromyography was used to examine the activities of the right transversus abdominis, rectus abdominis, lumbar multifidus, and lumbar erector spinae muscles in 5 conditions: static standing on land and in water, running in deep water with high knee and cross-country styles, and finally walking on a treadmill. Results: The percentage of maximal voluntary contraction of the transversus abdominis was significantly higher for both running styles in DWR, compared with that of static standing in water. Comparing directly the 2 styles, muscle activity was higher with a high knee action compared to without. The activation of transversus abdominis during high-knee DWR was comparable with that during treadmill walking and this may have clinical implications. Conclusion: The results of this study confirmed that running in deep water with a high knee action activated trunk muscles differently compared with standing or walking on land.


Author(s):  
María del Mar Moreno-Muñoz ◽  
Fidel Hita-Contreras ◽  
María Dolores Estudillo-Martínez ◽  
Agustín Aibar-Almazán ◽  
Yolanda Castellote-Caballero ◽  
...  

Background: Abdominal Hypopressive Training (AHT) provides postural improvement, and enhances deep trunk muscle activation. However, until recently, there was a lack of scientific literature supporting these statements. The major purpose of this study was to investigate the effect of AHT on posture control and deep trunk muscle function. Methods: 125 female participants aged 18–60 were randomly allocated to the Experimental Group (EG), consisting of two sessions of 30 min per week for 8 weeks of AHT, or the Control Group (CG), who did not receive any treatment. Postural control was measured with a stabilometric platform to assess the static balance and the activation of deep trunk muscles (specifically the Transverse Abdominal muscle (TrA)), which was measured by real-time ultrasound imaging. Results: The groups were homogeneous at baseline. Statistical differences were identified between both groups after intervention in the Surface of the Center of Pressure (CoP) Open-Eyes (S-OE) (p = 0.001, Cohen’s d = 0.60) and the Velocity of CoP under both conditions; Open-Eyes (V-OE) (p = 0.001, Cohen´s d = 0.63) and Close-Eyes (V-CE) (p = 0.016, Cohen´s d = 0.016), with the EG achieving substantial improvements. Likewise, there were statistically significant differences between measurements over time for the EG on S-OE (p < 0.001, Cohen´s d = 0.99); V-OE (p = 0.038, Cohen´s d = 0.27); V-CE (p = 0.006, Cohen´s d = 0.39), anteroposterior movements of CoP with Open-Eyes (RMSY-OE) (p = 0.038, Cohen´s d = 0.60) and activity of TrA under contraction conditions (p < 0.001, Cohen´s d = 0.53). Conclusions: The application of eight weeks of AHT leads to positive outcomes in posture control, as well as an improvement in the deep trunk muscle contraction in the female population.


2009 ◽  
Vol 21 (02) ◽  
pp. 81-88 ◽  
Author(s):  
Wensheng Hou ◽  
Xiaolin Zheng ◽  
Yingtao Jiang ◽  
Jun Zheng ◽  
Chenglin Peng ◽  
...  

Force production involves the coordination of multiple muscles, and the produced force levels can be attributed to the electrophysiology activities of those related muscles. This study is designed to explore the activity modes of extensor carpi radialis longus (ECRL) using surface electromyography (sEMG) at the presence of different handgrip force levels. We attempt to compare the performance of both the linear and nonlinear models for estimating handgrip forces. To achieve this goal, a pseudo-random sequence of handgrip tasks with well controlled force ranges is defined for calibration. Eight subjects (all university students, five males, and three females) have been recruited to conduct both calibration and voluntary trials. In each trial, sEMG signals have been acquired and preprocessed with Root–Mean–Square (RMS) method. The preprocessed signals are then normalized with amplitude value of Maximum Voluntary Contraction (MVC)-related sEMG. With the sEMG data from calibration trials, three models, Linear, Power, and Logarithmic, are developed to correlate the handgrip force output with the sEMG activities of ECRL. These three models are subsequently employed to estimate the handgrip force production of voluntary trials. For different models, the Root–Mean–Square–Errors (RMSEs) of the estimated force output for all the voluntary trials are statistically compared in different force ranges. The results show that the three models have different performance in different force ranges. Linear model is suitable for moderate force level (30%–50% MVC), whereas a nonlinear model is more accurate in the weak force level (Power model, 10%–30% MVC) or the strong force level (Logarithmic model, 50%–80% MVC).


2007 ◽  
Vol 103 (4) ◽  
pp. 1318-1325 ◽  
Author(s):  
Stéphane Baudry ◽  
Jacques Duchateau

Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions ( 3 ). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT250), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC ( P < 0.001), but the effect was greatest for the twitch (∼182%) compared with the HFT250 or voluntary contractions (∼14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased (∼13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.


2013 ◽  
Vol 109 (6) ◽  
pp. 1579-1588 ◽  
Author(s):  
Ignacio Mendez-Balbuena ◽  
Jose Raul Naranjo ◽  
Xi Wang ◽  
Agnieska Andrykiewicz ◽  
Frank Huethe ◽  
...  

Isometric compensation of predictably frequency-modulated low forces is associated with corticomuscular coherence (CMC) in beta and low gamma range. It remains unclear how the CMC is influenced by unpredictably modulated forces, which create a mismatch between expected and actual sensory feedback. We recorded electroencephalography from the contralateral hand motor area, electromyography (EMG), and the motor performance of 16 subjects during a visuomotor task in which they had to isometrically compensate target forces at 8% of the maximum voluntary contraction with their right index finger. The modulated forces were presented with predictable or unpredictable frequencies. We calculated the CMC, the cortical motor alpha-, beta-, and gamma-range spectral powers (SP), and the task-related desynchronization (TRD), as well as the EMG SP and the performance. We found that in the unpredictable condition the CMC was significantly lower and associated with lower cortical motor SP, stronger TRD, higher EMG SP, and worse performance. The findings suggest that due to the mismatch between predicted and actual sensory feedback leading to higher computational load and less stationary motor state, the unpredictable modulation of the force leads to a decrease in corticospinal synchrony, an increase in cortical and muscle activation, and a worse performance.


2018 ◽  
Vol 120 (4) ◽  
pp. 2059-2065
Author(s):  
Stefan Delmas ◽  
Agostina Casamento-Moran ◽  
Seoung Hoon Park ◽  
Basma Yacoubi ◽  
Evangelos A. Christou

Reaction time (RT) is the time interval between the appearance of a stimulus and initiation of a motor response. Within RT, two processes occur, selection of motor goals and motor planning. An unresolved question is whether perturbation to the motor planning component of RT slows the response and alters the voluntary activation of muscle. The purpose of this study was to determine how the modulation of muscle activity during an RT response changes with motor plan perturbation. Twenty-four young adults (20.5 ±1.1 yr, 13 women) performed 15 trials of an isometric RT task with ankle dorsiflexion using a sinusoidal anticipatory strategy (10–20% maximum voluntary contraction). We compared the processing part of the RT and modulation of muscle activity from 10 to 60 Hz of the tibialis anterior (primary agonist) when the stimulus appeared at the trough or at the peak of the sinusoidal task. We found that RT ( P = 0.003) was longer when the stimulus occurred at the peak compared with the trough. During the time of the reaction, the electromyography (EMG) power from 10 to 35 Hz was less at the peak than the trough ( P = 0.019), whereas the EMG power from 35 to 60 Hz was similar between the peak and trough ( P = 0.92). These results suggest that perturbation to motor planning lengthens the processing part of RT and alters the voluntary activation of the muscle by decreasing the relative amount of power from 10 to 35 Hz. NEW & NOTEWORTHY We aimed to determine whether perturbation to motor planning would alter the speed and muscle activity of the response. We compared trials when a stimulus appeared at the peak or trough of an oscillatory reaction time task. When the stimulus occurred at the trough, participants responded faster, with greater force, and less EMG power from 10-35 Hz. We provide evidence that motor planning perturbation slows the response and alters the voluntary activity of the muscle.


2018 ◽  
Vol 10 (4) ◽  
pp. 355-360 ◽  
Author(s):  
David A. Krause ◽  
Lucas G. Dueffert ◽  
Jaclyn L. Postma ◽  
Eric T. Vogler ◽  
Amy J. Walsh ◽  
...  

Background: External rotation (ER) strengthening of the shoulder is an integral component of rehabilitative and preventative programs for overhead athletes. A variety of shoulder ER strengthening exercises are reported, including those intended to integrate the core musculature. The purpose of this study was to examine ER torque and electromyographic (EMG) activation of shoulder and trunk muscles while performing resisted isometric shoulder ER in 3 positions (standing, side lying, and side plank). Hypothesis: Significantly greater force and shoulder muscle activation would be generated while side lying given the inherent stability of the position, and greater trunk muscle activation would be generated in the less stable plank position. Study Design: Quasi-experimental repeated-measures study. Level of Evidence: Level 5. Methods: A convenience sample of 25 healthy overhead recreational athletes (9 men, 16 women) participated in this study. EMG electrodes were placed on the infraspinatus, posterior deltoid, middle trapezius, multifidi, internal obliques, and external obliques. EMG signals were normalized to a maximal isometric contraction. Participants performed resisted isometric ER in standing, side-lying, and side plank positions. Results were analyzed using a repeated-measures analysis of variance with post hoc Bonferroni corrections (α = 0.05). Results: There was no significant difference in ER torque between positions (α = 0.05). A significant difference in EMG activity of shoulder and trunk musculature between positions was found in 7 of the 8 muscles monitored. Significantly greater EMG activity in the infraspinatus, middle trapezius, and the nondominant external and internal obliques was found in the side plank position as compared with standing and side lying. Conclusion: While there was no difference in ER torque between the 3 exercise positions, EMG activity of the shoulder and trunk muscles was dependent on body position. Clinical Relevance: If a clinician is seeking to integrate trunk muscle activation while performing shoulder ER strengthening, the side plank position is preferred as compared with standing or side lying.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tadanobu Suehiro ◽  
Hiroshi Ishida ◽  
Kenichi Kobara ◽  
Hiroshi Osaka ◽  
Chiharu Kurozumi

Abstract Background The active hip abduction test (AHAbd) is widely used to evaluate lumbopelvic stability, but the onset of trunk muscle activation during the test in individuals with recurrent low back pain (rLBP) has not been investigated so far. It is important to investigate the pattern of trunk muscle activation during the AHAbd test to provide insight into the interpretation of observation-based assessment results; this may help to create exercise therapy interventions, from a movement control perspective, for people seeking treatment for rLBP. The purpose of this study was to compare the timing of trunk muscle activation between individuals with and without rLBP and to assess potential differences. Methods Seventeen subjects in remission from rLBP and 17 subjects without rLBP were recruited. We performed surface electromyography of the transversus abdominis/internal abdominal oblique, external oblique, erector spinae, and gluteus medius muscles during the AHAbd test on both sides. The onset of trunk muscle activation was calculated relative to the prime mover gluteus medius. The independent-samples t- and Mann-Whitney U tests were used to compare the onset of trunk muscle activation between the two groups. Results The onset of transversus abdominis/internal abdominal oblique activation on the ipsilateral (right AHAbd: −3.0 ± 16.2 vs. 36.3 ± 20.0 msec, left AHAbd: −7.2 ± 18.6 vs. 29.6 ± 44.3 ms) and contralateral sides (right AHAbd: −11.5 ± 13.9 vs. 24.4 ± 32.3 ms, left AHAbd: −10.1 ± 12.5 vs. 23.3 ± 17.2 ms) and erector spinae on the contralateral side (right AHAbd: 76.1 ± 84.9 vs. 183.9 ± 114.6 ms, left AHAbd: 60.7 ± 70.5 vs. 133.9 ± 98.6 ms) occurred significantly later in individuals with rLBP than in individuals without rLBP (p < 0.01). During the left AHAbd test, the ipsilateral erector spinae was also activated significantly later in individuals with rLBP than in individuals without rLBP (71.1 ± 80.1 vs. 163.8 ± 120.1 ms, p < 0.05). No significant difference was observed in the onset of the external oblique activation on the right and left AHAbd tests (p > 0.05). Conclusions Our results suggest that individuals with rLBP possess a trunk muscle activation pattern that is different from that of individuals without rLBP. These findings provide an insight into the underlying muscle activation patterns during the AHAbd test for people with rLBP and may support aggressive early intervention for neuromuscular control.


Sign in / Sign up

Export Citation Format

Share Document