scholarly journals Inhibitory-excitatory synaptic balance is shifted toward increased excitation in magnocellular neurosecretory cells of heart failure rats

2011 ◽  
Vol 106 (3) ◽  
pp. 1545-1557 ◽  
Author(s):  
Evgeniy S. Potapenko ◽  
Vinicia C. Biancardi ◽  
Renea M. Florschutz ◽  
Pan D. Ryu ◽  
Javier E. Stern

Despite the well-established contribution of neurohumoral activation to morbidity and mortality in heart failure (HF) patients, relatively little is known about the underlying central nervous system mechanisms. In this study, we aimed to determine whether changes in GABAergic inhibitory and glutamatergic excitatory synaptic function contribute to altered hypothalamic magnocellular neurosecretory cell (MNC) activity in HF rats. Patch-clamp recordings were obtained from MNCs in brain slices from sham and HF rats. Glutamate excitatory (EPSCs) and GABAergic inhibitory postsynaptic currents (IPSCs) were simultaneously recorded, and changes in their strengths, as well as their interactions, were evaluated. We found a diminished GABAergic synaptic strength in MNCs of HF rats, reflected as faster decaying IPSCs and diminished mean IPSC charge transfer. Opposite changes were observed in glutamate EPSC synaptic strength, resulting in a shift in the GABA-glutamate balance toward a relatively stronger glutamate influence in HF rats. The prolongation of glutamate EPSCs during HF was mediated, at least in part, by an enhanced contribution of AMPA receptor desensitization to the EPSC decay time course. EPSC prolongation, and consequently increased unitary strength, resulted in a stronger AMPA receptor-mediated excitatory drive to firing discharge in MNCs of HF rats. Blockade of GABAA synaptic activity diminished the EPSC waveform variability observed among events in sham rats, an effect that was blunted in HF rats. Together, our results suggest that opposing changes in postsynaptic properties of GABAergic and glutamatergic synaptic function contribute to enhanced magnocellular neurosecretory activity in HF rats.

1994 ◽  
Vol 72 (2) ◽  
pp. 1032-1036 ◽  
Author(s):  
M. R. Pelletier ◽  
J. J. Hablitz

1. Neocortical brain slices were prepared from rats (35–50 days of age) and maintained in vitro. Intracellular recordings were obtained from neurons in cortical layers II/III. The effect of bath application of cyclothiazide (CYZ), a potent blocker of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor desensitization, on evoked synaptic activity and passive membrane properties was investigated. 2. Bath application of CYZ did not significantly affect resting membrane potential, input resistance, or repetitive firing. CYZ increased both the amplitude and duration of evoked excitatory postsynaptic potentials (EPSPs). Polysynaptic responses were also augumented. These effects persisted after the blockade of N-methyl-D-aspartate (NMDA) receptors with D-2-amino-5-phosphonovaleric acid (D-APV). The magnitude of these effects appeared to vary directly with stimulation intensity and presumably, amount of glutamate release. 3. Epileptiform activity was induced by bath application of bicuculline methiodide. The amplitude and duration of evoked paroxysmal discharges were increased by CYZ. Similar results were seen in presence of D-APV. 4. These results indicate that CYZ has significant effects on synaptic transmission. Desensitization of non-NMDA receptors may be an important mechanism for determining the time course of EPSPs and in curtailing epileptiform responses in the rat neocortex.


2005 ◽  
Vol 94 (3) ◽  
pp. 2171-2181 ◽  
Author(s):  
Kerstin Schwabe ◽  
Cezar Gavrilovici ◽  
Dan C. McIntyre ◽  
Michael O. Poulter

In the perirhinal cortex of seizure prone (SP) rats, GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) are smaller in amplitude but have longer deactivation phases than mIPSCs recorded in normal control (NC; outbred) rats. These differences in mIPSCs are correlated to the relatively higher α1 subunit expression in the NC rat strains and the higher α2, α3, and α5 subunit expression in the SP strain. Using patch-clamp recording, we investigated how the neurosteroids tetrahydrodeoxcorticosterone (THDOC) and allopregnanolone at physiological and pharmacological concentrations may differentially affect the mIPSCs in the perirhinal cortex of brain slices isolated from SP and NC rats. We found that 100 nM THDOC prolonged the time course and increased the amplitude of both the mono- and biphasic mIPSCs in the SP rats, but these effects were smaller in the NC rats. By comparison, allopregnanolone (100 nM) had small effects in both the NC and SP rats. At 1.0 μM, THDOC enhanced mIPSCs in both strains, but this effect was not greater in the SP rat than it was at 100 nM. By contrast, allopregnanolone (500 nM) enhanced the time course of the mIPSCs in both strains but it reduced mIPSC amplitudes as well. THDOC (100 nM) was much more effective than 100 nM allopregnanolone in inducing a tonic current in SP and NC rats. These data show that neurosteroids modulate synaptic activity at synapses having different biophysical behaviors. As differing GABAA receptors are targeted by subsets of interneurons, these data suggest these neurosteroids may selectively modulate one inhibitory input over another.


2000 ◽  
Vol 83 (2) ◽  
pp. 659-670 ◽  
Author(s):  
Antoine Robert ◽  
James R. Howe ◽  
Stephen G. Waxman

The development of glutamatergic synapses involves a sequence of events that are still not well understood. We have studied the time course of the development of glutamatergic synapses in cultured spinal neurons by characterizing spontaneous synaptic currents recorded from cells maintained in vitro for different times. At short times in culture (2 days in vitro; DIV2), spontaneous synaptic activity consisted almost solely of N-methyl-d-aspartate (NMDA) receptor (NMDAR) openings. In contrast, older neurons (DIV5 to DIV8) displayed clear α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)–mediated synaptic currents, while the NMDAR-mediated activity remained small. Between 8 and 14 days in vitro there was a large increase in the density of synaptically activated NMDARs, although there was no significant increase in the density of the NMDAR-mediated current activated by exogenous glutamate. The results indicate that there is a switch in NMDAR targeting from somatic to synaptic regions during the course of the second in vitro week. Finally, our results support the conclusion that the spontaneous synaptic activity displayed in culture depends on ongoing NMDAR-mediated activity, even when the expression of synaptic NMDARs is low.


2012 ◽  
Vol 303 (3) ◽  
pp. R291-R300 ◽  
Author(s):  
Evgeniy S. Potapenko ◽  
Vinicia C. Biancardi ◽  
Yiqiang Zhou ◽  
Javier E. Stern

Neurohumoral activation, which includes augmented plasma levels of the neurohormone vasopressin (VP), is a common finding in heart failure (HF) that contributes to morbidity and mortality in this disease. While an increased activation of magnocellular neurosecretory cells (MNCs) and enhanced glutamate function in HF is well documented, the precise underlying mechanisms remain to be elucidated. Here, we combined electrophysiology and protein measurements to determine whether altered glial glutamate transporter function and/or expression occurs in the hypothalamic supraoptic nucleus (SON) during HF. Patch-clamp recordings obtained from MNCs in brain slices show that pharmacological blockade of astrocyte glutamate transporter 1 (GLT1) function [500 μM dihydrokainate (DHK)], resulted in a persistent N-methyl-d-aspartate receptor (NMDAR)-mediated inward current (tonic INMDA) in sham rats, an effect that was significantly smaller in MNCs from HF rats. In addition, we found a diminished GLT1 protein content in plasma membrane (but not cytosolic) fractions of SON punches in HF rats. Conversely, astrocyte GLAST expression was significantly higher in the SON of HF rats, while nonselective blockade of glutamate transport activity (100 μM TBOA) evoked an enhanced tonic INMDA activation in HF rats. Steady-state activation of NMDARs by extracellular glutamate levels was diminished during HF. Taken together, these results support a shift in the relative expression and function of two major glial glutamate transporters (from GLT1 to GLAST predominance) during HF. This shift may act as a compensatory mechanism to preserve an adequate basal glutamate uptake level in the face of an enhanced glutamatergic afferent activity in HF rats.


Author(s):  
Joseph P. Steiner ◽  
Kathryn B. Payne ◽  
Christopher Drummond Main ◽  
Sabrina D'Alfonso ◽  
Kirsten X. Jacobsen ◽  
...  

Background:Previously we showed that 6-hydroxydopamine lesions of the substantia nigra eliminate corticostriatal LTP and that the neuroimmunolophilin ligand (NIL), GPI-1046, restores LTP.Methods:We used cDNA microarrays to determine what mRNAs may be over- or under-expressed in response to lesioning and/or GPI-1046 treatment. Patch clamp recordings were performed to investigate changes in NMDA channel function before and after treatments.Results:We found that 51 gene products were differentially expressed. Among these we found that GPI-1046 treatment up-regulated presenilin-1 (PS-1) mRNA abundance. This finding was confirmed using QPCR. PS-1 protein was also shown to be over-expressed in the striatum of lesioned/GPI-1046-treated rats. As PS-1 has been implicated in controlling NMDA-receptor function and LTP is reduced by lesioning we assayed NMDA mediated synaptic activity in striatal brain slices. The lesion-induced reduction of dopaminergic innervation was accompanied by the near complete loss of NDMA receptor-mediated synaptic transmission between the cortex and striatum. GPI-1046 treatment of the lesioned rats restored NMDA-mediated synaptic transmission but not the dopaminergic innervation. Restoration of NDMA channel function was apparently specific as the sodium channel current density was also reduced due to lesioning but GPI-1046 did not reverse this effect. We also found that restoration of NMDA receptor function was also not associated with either an increase in NMDA receptor mRNA or protein expression.Conclusion:As it has been previously shown that PS-1 is critical for normal NMDA receptor function, our data suggest that the improvement of excitatory neurotransmission occurs through the GPI-1046-induced up-regulation of PS-1.


2007 ◽  
Vol 293 (2) ◽  
pp. H1223-H1230 ◽  
Author(s):  
Fadi G. Akar ◽  
Robert D. Nass ◽  
Samuel Hahn ◽  
Eugenio Cingolani ◽  
Manish Shah ◽  
...  

End-stage heart failure (HF) is characterized by changes in conduction velocity (CV) that predispose to arrhythmias. Here, we investigate the time course of conduction changes with respect to alterations in connexin 43 (Cx43) properties and mechanical function during the development of HF. We perform high-resolution optical mapping in arterially perfused myocardial preparations from dogs subjected to 0, 3, 7, 14, and 21 days of rapid pacing to produce variable degrees of remodeling. CV is compared with an index of mechanical function [left ventricular end-diastolic pressure (LVEDP)] and with dynamic changes in the expression, distribution, and phosphorylation of Cx43. In contrast to repolarization, CV was preserved during early stages of remodeling (3 and 7 days) and significantly reduced at later stages, which were associated with marked increases in LVEDP. Measurements of differentially phosphorylated Cx43 isoforms revealed early, sustained downregulation of pan-Cx43 that preceded changes in CV and LVEDP, a gradual rise in a dephosphorylated Cx43 isoform to over twofold baseline levels in end-stage HF, and a late abrupt increase in pan-Cx43, but not dephosphorylated Cx43, lateralization. These data demonstrate that 1) CV slowing occurs only at advanced stages of remodeling, 2) total reduction of pan-Cx43 is an early event that precedes mechanical dysfunction and CV slowing, 3) changes in Cx43 phosphorylation are more closely associated with the onset of HF, and 4) Cx43 lateralization is a late event that coincides with marked CV reduction. These data reveal a novel paradigm of remodeling based on the timing of conduction abnormalities relative to changes in Cx43 isoforms and mechanical dysfunction.


1997 ◽  
Vol 78 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Stefan Titz ◽  
Bernhard U. Keller

Titz, Stefan and Bernhard U. Keller. Rapidly deactivating AMPA receptors determine excitatory synaptic transmission to interneurons in the nucleus tractus solitarius from rat. J. Neurophysiol. 78: 82–91, 1997. Excitatory synaptic transmission was investigated in interneurons of the parvocellular nucleus tractus solitarius (pNTS) by performing patch-clamp experiments in thin slice preparations from rat brain stem. Stimulation of single afferent fibers evoked excitatory postsynaptic currents (EPSCs) mediated by glutamate receptors of the dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and N-methyl-d-aspartate types. AMPA-receptor-mediated EPSCs displayed decay time constants of 3.5 ± 1.2 (SD) ms (13 cells), which were slow compared with EPSC decay time constants in neurons of the cerebellum or hippocampus. Slow EPSC decay was not explained by dendritic filtering, because the passive membrane properties of pNTS interneurons provided favorable voltage-clamp conditions. Also, the slowness of EPSC decay did not result from slow deactivation of AMPA receptors (0.7 ± 0.2 ms, 5 cells), which was investigated during rapid application of agonist to outside-out patches. Comparison of AMPA receptor kinetics with EPSC decay time constants suggested that the slow time course of EPSCs resulted from the prolonged presence of glutamate in the synaptic cleft.


Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 40 ◽  
Author(s):  
Joongkyu Park

Synaptic plasticity has been considered a key mechanism underlying many brain functions including learning, memory, and drug addiction. An increase or decrease in synaptic activity of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complex mediates the phenomena as shown in the cellular models of synaptic plasticity, long-term potentiation (LTP), and depression (LTD). In particular, protein phosphorylation shares the spotlight in expressing the synaptic plasticity. This review summarizes the studies on phosphorylation of the AMPAR pore-forming subunits and auxiliary proteins including transmembrane AMPA receptor regulatory proteins (TARPs) and discusses its role in synaptic plasticity.


2001 ◽  
Vol 85 (4) ◽  
pp. 1761-1771 ◽  
Author(s):  
Stephanie J. Cragg ◽  
Charles Nicholson ◽  
June Kume-Kick ◽  
Lian Tao ◽  
Margaret E. Rice

Somatodendritic release of dopamine (DA) in midbrain is, at least in part, nonsynaptic; moreover, midbrain DA receptors are predominantly extrasynaptic. Thus somatodendritic DA mediates volume transmission, with an efficacy regulated by the diffusion and uptake characteristics of the local extracellular microenvironment. Here, we quantitatively evaluated diffusion and uptake in substantia nigra pars compacta (SNc) and reticulata (SNr), ventral tegmental area (VTA), and cerebral cortex in guinea pig brain slices. The geometric parameters that govern diffusion, extracellular volume fraction (α) and tortuosity (λ), together with linear uptake ( k′), were determined for tetramethylammonium (TMA+), and for DA, using point-source diffusion combined with ion-selective and carbon-fiber microelectrodes. TMA+-diffusion measurements revealed a large α of 30% in SNc, SNr, and VTA, which was significantly higher than the 22% in cortex. Values for λ and k′ for TMA+ were similar among regions. Point-source DA-diffusion curves fitted theory well with linear uptake, with significantly higher values of k′ for DA in SNc and VTA (0.08–0.09 s− 1) than in SNr (0.006 s− 1), where DA processes are sparser. Inhibition of DA uptake by GBR-12909 caused a greater decrease in k′ in SNc than in VTA. In addition, DA uptake was slightly decreased by the norepinephrine transport inhibitor, desipramine in both regions, although this was statistically significant only in VTA. We used these data to model the radius of influence of DA in midbrain. Simulated release from a 20-vesicle point source produced DA concentrations sufficient for receptor activation up to 20 μm away with a DA half-life at this distance of several hundred milliseconds. Most importantly, this model showed that diffusion rather than uptake was the most important determinant of DA time course in midbrain, which contrasts strikingly with the striatum where uptake dominates. The issues considered here, while specific for DA in midbrain, illustrate fundamental biophysical properties relevant for all extracellular communication.


Sign in / Sign up

Export Citation Format

Share Document