scholarly journals Characterization of ion channels and O2 sensitivity in gill neuroepithelial cells of the anoxia-tolerant goldfish (Carassius auratus)

2017 ◽  
Vol 118 (6) ◽  
pp. 3014-3023 ◽  
Author(s):  
Peter C. Zachar ◽  
Wen Pan ◽  
Michael G. Jonz

The neuroepithelial cell (NEC) of the fish gill is an important model for O2 sensing in vertebrates; however, a complete picture of the chemosensory mechanisms in NECs is lacking, and O2 chemoreception in vertebrates that are tolerant to anoxia has not yet been explored. Using whole cell patch-clamp recording, we characterized four types of ion channels in NECs isolated from the anoxia-tolerant goldfish. A Ca2+-dependent K+ current ( IKCa) peaked at ~20 mV, was potentiated by increased intracellular Ca2+, and was reduced by 100 μM Cd2+. A voltage-dependent inward current in Ba2+ solution, with peak at 0 mV, confirmed the presence of Ca2+ channels. A voltage-dependent K+ current ( IKV) was inhibited by 20 mM tetraethylammonium and 5 mM 4-aminopyridine, revealing a background K+ current ( IKB) with open rectification. Mean resting membrane potential of −45.2 ± 11.6 mV did not change upon administration of hypoxia (Po2 = 11 mmHg), nor were any of the K+ currents sensitive to changes in Po2 during whole cell recording. By contrast, when the membrane and cytosol were left undisturbed during fura-2 or FM 1-43 imaging experiments, hypoxia increased intracellular Ca2+ concentration and initiated synaptic vesicle activity. 100 μM Cd2+ and 50 μM nifedipine eliminated uptake of FM 1-43. We conclude that Ca2+ influx via L-type Ca2+ channels is correlated with vesicular activity during hypoxic stimulation. In addition, we suggest that expression of IKCa in gill NECs is species specific and, in goldfish, may contribute to an attenuated response to acute hypoxia. NEW & NOTEWORTHY This study provides the first physiological characterization of oxygen chemoreceptors from an anoxia-tolerant vertebrate. Neuroepithelial cells (NECs) from the gills of goldfish displayed L-type Ca2+ channels and three types of K+ channels, one of which was dependent upon intracellular Ca2+. Although membrane currents were not inhibited by hypoxia during patch-clamp recording, this study is the first to show that NECs with an undisturbed cytosol responded to hypoxia with increased intracellular Ca2+ and synaptic vesicle activity.

1998 ◽  
Vol 275 (6) ◽  
pp. L1019-L1025 ◽  
Author(s):  
Helen L. Reeve ◽  
E. Kenneth Weir ◽  
Stephen L. Archer ◽  
David N. Cornfield

The mechanism responsible for the abrupt decrease in resistance of the pulmonary circulation at birth may include changes in the activity of O2-sensitive K+ channels. We characterized the electrophysiological properties of fetal and adult ovine pulmonary arterial (PA) smooth muscle cells (SMCs) using conventional and amphotericin B-perforated patch-clamp techniques. Whole cell K+ currents of fetal PASMCs in hypoxia were small and characteristic of spontaneously transient outward currents. The average resting membrane potential (RMP) was −36 ± 3 mV and could be depolarized by charybdotoxin (100 nM) or tetraethylammonium chloride (5 mM; both blockers of Ca2+-dependent K+ channels) but not by 4-aminopyridine (4-AP; 1 mM; blocker of voltage-gated K+ channels) or glibenclamide (10 μM; blocker of ATP-dependent K+channels). In hypoxia, chelation of intracellular Ca2+ by 5 mM 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid further reduced the amplitude of the whole cell K+ current and prevented spontaneously transient outward current activity. Under these conditions, the remaining current was partially inhibited by 1 mM 4-AP. K+ currents of fetal PASMCs maintained in normoxia were not significantly reduced by acute hypoxia. In normoxic adult PASMCs, whole cell K+ currents were large and RMP was −49 ± 3 mV. These 4-AP-sensitive K+ currents were partially inhibited by exposure to acute hypoxia. We conclude that the K+ channel regulating RMP in the ovine pulmonary circulation changes after birth from a Ca2+-dependent K+ channel to a voltage-dependent K+ channel. The maturational-dependent differences in the mechanism of the response to acute hypoxia may be due to this difference in K+ channels.


2002 ◽  
Vol 7 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Deborah F. Baxter ◽  
Martin Kirk ◽  
Amy F. Garcia ◽  
Alejandra Raimondi ◽  
Mats H. Holmqvist ◽  
...  

The study of ion channel-mediated changes in membrane potential using the conventional bisoxonol fluorescent dye DiBAC4(3) has several limitations, including a slow onset of response and multistep preparation, that limit both the fidelity of the results and the throughput of membrane potential assays. Here, we report the characterization of the FLIPR Membrane Potential Assay Kit (FMP) in cells expressing voltage- and ligand-gated ion channels. The steady-state and kinetics fluorescence properties of FMP were compared with those of DiBAC4(3), using both FLIPR and whole-cell patch-clamp recording. Our experiments with the voltage-gated K+ channel, hElk-1, revealed that FMP was 14-fold faster than DiBAC4(3) in response to depolarization. On addition of 60 mM KCl, the kinetics of fluorescence changes of FMP using FLIPR were identical to those observed in the electrophysiological studies using whole-cell current clamp. In addition, KCl concentration-dependent increases in FMP fluorescence correlated with the changes of membrane potential recorded in whole-cell patch clamp. In studies examining vanilloid receptor-1, a ligand-gated nonselective cation channel, FMP was superior to DiBAC4(3) with respect to both kinetics and amplitude of capsaicin-induced fluorescence changes. FMP has also been used to measure the activation of KATP1 and hERG.2 Thus this novel membrane potential dye represents a powerful tool for developing high-throughput screening assays for ion channels.


1997 ◽  
Vol 273 (6) ◽  
pp. C1793-C1800 ◽  
Author(s):  
Robson Coutinho-Silva ◽  
Pedro Muanis Persechini

Millimolar concentrations of extracellular ATP (ATPo) can induce the permeabilization of plasma membranes of macrophages and other bone marrow-derived cells to low-molecular-weight solutes, a phenomenon that is the hallmark of P2Z purinoceptors. However, patch-clamp and whole cell electrophysiological experiments have so far failed to demonstrate the existence of any ATPo-induced P2Z-associated pores underlying this permeabilization phenomenon. Here, we describe ATPo-induced pores of 409 ± 33 pS recorded using cell-attached patch-clamp experiments performed in macrophages and J774 cells. These pores are voltage dependent and display several properties of the P2Z-associated permeabilization phenomenon: they are permeable to both large cations and anions, such as tris(hydroxymethyl)aminomethane, N-methyl-d-glucamine, and glutamate; their opening is favored at temperatures higher than 30°C; they are blocked by oxidized ATP and Mg2+; and they can be triggered by 3′- O-(4-benzoylbenzoyl)-ATP but not by UTP or ADP. We conclude that the pores described in this report are associated with the P2Z permeabilization phenomenon.


2005 ◽  
Vol 10 (8) ◽  
pp. 806-813 ◽  
Author(s):  
Dmitry V. Vasilyev ◽  
Thomas L. Merrill ◽  
Mark R. Bowlby

Efforts to develop novelmethods for recording from ion channels have been receiving increased attention in recent years. In this study, the authors report a unique “inside-out” whole-cell configuration of patch-clamp recording that has been developed. This method entails adding cells into a standard patch pipette and, with positive pressure, obtaining a gigaseal recording from a cell at the inside tip of the electrode. In this configuration, the cellmay be moved through the air, first rupturing part of the cellularmembrane and enabling bath access to the intracellular side of the membrane, and then into a series of wells containing differing solutions, enabling robotic control of all the steps in an experiment. The robotic system developed here fully automates the electrophysiological experiments, including gigaseal formation, obtaining whole-cell configuration, data acquisition, and drug application. Proof-of-principle experiments consisting of application of intracellularly acting potassium channel blockers to K+ channel cell lines resulted in a very rapid block, aswell as block reversal, of the current. This technique allows compound application directly to the intracellular side of ion channels and enables the dissociation of compound inactivities due to cellular barrier limitations. This technique should allow for parallel implementation of recording pipettes and the future development of larger array-based screening methods.


1993 ◽  
Vol 102 (5) ◽  
pp. 859-869 ◽  
Author(s):  
N B Datyner ◽  
I S Cohen

We have examined slow inactivation of L-type calcium current in canine Purkinje myocytes with the whole cell patch clamp technique. Slow inactivation is voltage dependent. It is negligible at -50 mV but can inactivate more than half of available iCaL at -10 mV. There are two major consequences of this slow inactivation. First, standard protocols for the measurement of T-type current can dramatically overestimate its contribution to total calcium current, and second, the position and steepness of the inactivation versus voltage curve for iCaL will depend on the method of measurement. Given the widespread attempts to identify calcium current components and characterize them biophysically, an important first step should be to determine the extent of slow inactivation of calcium current in each preparation.


Sign in / Sign up

Export Citation Format

Share Document