scholarly journals Laminar Variation in Threshold for Detection of Electrical Excitation of Striate Cortex by Macaques

2005 ◽  
Vol 94 (5) ◽  
pp. 3443-3450 ◽  
Author(s):  
Edgar A. DeYoe ◽  
Jeffrey D. Lewine ◽  
Robert W. Doty

Macaques were trained to signal their detection of electrical stimulation applied by a movable microelectrode to perifoveal striate cortex. Trains of ≤100 cathodal, 0.2-ms, constant current pulses were delivered at 50 or 100 Hz. The minimum current that could be reliably detected was measured at successive depths along radial electrode penetrations through the cortex. The lowest detection thresholds were routinely encountered when the stimulation was applied to layer 3, particularly just at the juncture between layers 3 and 4A. On the average, there was a twofold variation in threshold along the penetrations, with the highest intracortical thresholds being in layers 4C and 6. Variations as high as 20-fold were obtained in some individual penetrations, whereas relatively little change was observed in others. The minimum detectable current was 1 μA at a site in layer 3, i.e., 10–100 times lower than that for surface stimulation. Because macaques, as do human subjects, find electrical stimulation of striate cortex to be highly similar at all loci (a phosphene in the human case), it is puzzling as to how such uniformity of effect evolves from the exceedingly intricate circuitry available to the effective stimuli. It is hypothesized that the stimulus captures the most excitable elements, which then suppress other functional moieties, producing only the luminance of the phosphene. Lowest thresholds presumably are encountered when the electrode lies among these excitable elements that can, with higher currents, be stimulated directly from some distance or indirectly by the horizontal bands of myelinated axons, the stria of Baillarger.

2005 ◽  
Vol 94 (5) ◽  
pp. 3430-3442 ◽  
Author(s):  
John R. Bartlett ◽  
Edgar A. DeYoe ◽  
Robert W. Doty ◽  
Barry B. Lee ◽  
Jeffrey D. Lewine ◽  
...  

Macaques indicated their detection of onset or alteration of 0.2-ms pulses applied in various configurations through electrodes implanted in striate cortex. When microelectrodes were introduced and left in place, the threshold for detection of 100-Hz pulses nearly doubled within 24 h. However, for chronically implanted platinum-alloy macroelectrodes detection thresholds usually remained stable for many months, independently of location within striate cortex or its immediately subjacent white matter. Thresholds were unaffected by the visual conditions, such as light versus darkness, or movement of the eyes; but in one animal blind after acute glaucoma thresholds for loci in striate cortex were permanently decreased by about 50%. Learning to respond to electrical stimulation of the optic tract produced no tendency to respond to such stimulation of striate cortex. Onset of stimulation at a given locus could be detected even in the face of continuous supraliminal stimulation at four surrounding loci on a 3-mm radius. The surround stimulation did alter the threshold of the central locus, but such stimuli could not summate if they were subliminal by some 10%. Cessation of stimulation that had been continuing for 1 min to 1 h could be detected if it were being applied at a level 20–75% above that needed for detection of stimulus onset. Continuous stimulation had a pronounced “priming” effect, in that modulation of frequency or intensity of such stimulation by as little as 5% could be detected (e.g., 20 μA in a background of 500 μA, or <2-ms interpulse interval with pulses at 50 Hz). Using pulses inserted in various phase relations to ongoing pulses at 2–5 Hz, it could be determined that stimulus pulses were surrounded by a strong facilitatory period for about 30 ms, which was then replaced by refractoriness. Given the congruence of macaque and human visual anatomy and psychophysics, these results further encourage efforts to develop a cortical prosthesis for the blind.


2016 ◽  
Vol 115 (2) ◽  
pp. 685-691 ◽  
Author(s):  
A. Klöcker ◽  
D. Gueorguiev ◽  
J. L. Thonnard ◽  
A. Mouraux

Long-lasting mechanical vibrations applied to the skin induce a reversible decrease in the perception of vibration at the stimulated skin site. This phenomenon of vibrotactile adaptation has been studied extensively, yet there is still no clear consensus on the mechanisms leading to vibrotactile adaptation. In particular, the respective contributions of 1) changes affecting mechanical skin impedance, 2) peripheral processes, and 3) central processes are largely unknown. Here we used direct electrical stimulation of nerve fibers to bypass mechanical transduction processes and thereby explore the possible contribution of central vs. peripheral processes to vibrotactile adaptation. Three experiments were conducted. In the first, adaptation was induced with mechanical vibration of the fingertip (51- or 251-Hz vibration delivered for 8 min, at 40× detection threshold). In the second, we attempted to induce adaptation with transcutaneous electrical stimulation of the median nerve (51- or 251-Hz constant-current pulses delivered for 8 min, at 1.5× detection threshold). Vibrotactile detection thresholds were measured before and after adaptation. Mechanical stimulation induced a clear increase of vibrotactile detection thresholds. In contrast, thresholds were unaffected by electrical stimulation. In the third experiment, we assessed the effect of mechanical adaptation on the detection thresholds to transcutaneous electrical nerve stimuli, measured before and after adaptation. Electrical detection thresholds were unaffected by the mechanical adaptation. Taken together, our results suggest that vibrotactile adaptation is predominantly the consequence of peripheral mechanoreceptor processes and/or changes in biomechanical properties of the skin.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 370
Author(s):  
Walter Magerl ◽  
Emanuela Thalacker ◽  
Simon Vogel ◽  
Robert Schleip ◽  
Thomas Klein ◽  
...  

Musculoskeletal pain is often associated with pain referred to adjacent areas or skin. So far, no study has analyzed the somatosensory changes of the skin after the stimulation of different underlying fasciae. The current study aimed to investigate heterotopic somatosensory crosstalk between deep tissue (muscle or fascia) and superficial tissue (skin) using two established models of deep tissue pain (namely focal high frequency electrical stimulation (HFS) (100 pulses of constant current electrical stimulation at 10× detection threshold) or the injection of hypertonic saline in stimulus locations as verified using ultrasound). In a methodological pilot experiment in the TLF, different injection volumes of hypertonic saline (50–800 µL) revealed that small injection volumes were most suitable, as they elicited sufficient pain but avoided the complication of the numbing pinprick sensitivity encountered after the injection of a very large volume (800 µL), particularly following muscle injections. The testing of fascia at different body sites revealed that 100 µL of hypertonic saline in the temporal fascia and TLF elicited significant pinprick hyperalgesia in the overlying skin (–26.2% and –23.5% adjusted threshold reduction, p < 0.001 and p < 0.05, respectively), but not the trapezius fascia or iliotibial band. Notably, both estimates of hyperalgesia were significantly correlated (r = 0.61, p < 0.005). Comprehensive somatosensory testing (DFNS standard) revealed that no test parameter was changed significantly following electrical HFS. The experiments demonstrated that fascia stimulation at a sufficient stimulus intensity elicited significant across-tissue facilitation to pinprick stimulation (referred hyperalgesia), a hallmark sign of nociceptive central sensitization.


2000 ◽  
Vol 84 (2) ◽  
pp. 1103-1106 ◽  
Author(s):  
Tyson A. Tu ◽  
E. Gregory Keating

The frontal eye field (FEF), an area in the primate frontal lobe, has long been considered important for the production of eye movements. Past studies have evoked saccade-like movements from the FEF using electrical stimulation in animals that were not allowed to move their heads. Using electrical stimulation in two monkeys that were free to move their heads, we have found that the FEF produces gaze shifts that are composed of both eye and head movements. Repeated stimulation at a site evoked gaze shifts of roughly constant amplitude. However, that gaze shift could be accomplished with varied amounts of head and eye movements, depending on their (head and eye) respective starting positions. This evidence suggests that the FEF controls visually orienting movements using both eye and head rotations rather than just shifting the eyes as previously thought.


2000 ◽  
Vol 83 (4) ◽  
pp. 2145-2162 ◽  
Author(s):  
Ralph E. Beitel ◽  
Russell L. Snyder ◽  
Christoph E. Schreiner ◽  
Marcia W. Raggio ◽  
Patricia A. Leake

Cochlear prostheses for electrical stimulation of the auditory nerve (“electrical hearing”) can provide auditory capacity for profoundly deaf adults and children, including in many cases a restored ability to perceive speech without visual cues. A fundamental challenge in auditory neuroscience is to understand the neural and perceptual mechanisms that make rehabilitation of hearing possible in these deaf humans. We have developed a feline behavioral model that allows us to study behavioral and physiological variables in the same deaf animals. Cats deafened by injection of ototoxic antibiotics were implanted with either a monopolar round window electrode or a multichannel scala tympani electrode array. To evaluate the effects of perceptually significant electrical stimulation of the auditory nerve on the central auditory system, an animal was trained to avoid a mild electrocutaneous shock when biphasic current pulses (0.2 ms/phase) were delivered to its implanted cochlea. Psychophysical detection thresholds and electrical auditory brain stem response (EABR) thresholds were estimated in each cat. At the conclusion of behavioral testing, acute physiological experiments were conducted, and threshold responses were recorded for single neurons and multineuronal clusters in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (A1). Behavioral and neurophysiological thresholds were evaluated with reference to cochlear histopathology in the same deaf cats. The results of the present study include: 1) in the cats implanted with a scala tympani electrode array, the lowest ICC and A1 neural thresholds were virtually identical to the behavioral thresholds for intracochlear bipolar stimulation; 2) behavioral thresholds were lower than ICC and A1 neural thresholds in each of the cats implanted with a monopolar round window electrode; 3) EABR thresholds were higher than behavioral thresholds in all of the cats (mean difference = 6.5 dB); and 4) the cumulative number of action potentials for a sample of ICC neurons increased monotonically as a function of the amplitude and the number of stimulating biphasic pulses. This physiological result suggests that the output from the ICC may be integrated spatially across neurons and temporally integrated across pulses when the auditory nerve array is stimulated with a train of biphasic current pulses. Because behavioral thresholds were lower and reaction times were faster at a pulse rate of 30 pps compared with a pulse rate of 2 pps, spatial-temporal integration in the central auditory system was presumably reflected in psychophysical performance.


2015 ◽  
Vol 113 (10) ◽  
pp. 3866-3892 ◽  
Author(s):  
James O. Phillips ◽  
Leo Ling ◽  
Kaibao Nie ◽  
Elyse Jameyson ◽  
Christopher M. Phillips ◽  
...  

Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0–400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear.


Sign in / Sign up

Export Citation Format

Share Document