Effect of visual and haptic feedback on grasping movements

2014 ◽  
Vol 112 (12) ◽  
pp. 3189-3196 ◽  
Author(s):  
Chiara Bozzacchi ◽  
Robert Volcic ◽  
Fulvio Domini

Perceptual estimates of three-dimensional (3D) properties, such as the distance and depth of an object, are often inaccurate. Given the accuracy and ease with which we pick up objects, it may be expected that perceptual distortions do not affect how the brain processes 3D information for reach-to-grasp movements. Nonetheless, empirical results show that grasping accuracy is reduced when visual feedback of the hand is removed. Here we studied whether specific types of training could correct grasping behavior to perform adequately even when any form of feedback is absent. Using a block design paradigm, we recorded the movement kinematics of subjects grasping virtual objects located at different distances in the absence of visual feedback of the hand and haptic feedback of the object, before and after different training blocks with different feedback combinations (vision of the thumb and vision of thumb and index finger, with and without tactile feedback of the object). In the Pretraining block, we found systematic biases of the terminal hand position, the final grip aperture, and the maximum grip aperture like those reported in perceptual tasks. Importantly, the distance at which the object was presented modulated all these biases. In the Posttraining blocks only the hand position was partially adjusted, but final and maximum grip apertures remained unchanged. These findings show that when visual and haptic feedback are absent systematic distortions of 3D estimates affect reach-to-grasp movements in the same way as they affect perceptual estimates. Most importantly, accuracy cannot be learned, even after extensive training with feedback.

Author(s):  
Lei Tian ◽  
Aiguo Song ◽  
Dapeng Chen

In order to enhance the sense of reality haptic display based on image, it is widely expected to express various characteristics of the objects in the image using different kinds of haptic feedback. To this end, a multi-mode haptic display method of image was proposed in this paper, including the multi-feature extraction of image and the image expression with various types of haptic rendering. First, the device structure integrating force and vibrotactile feedbacks was designed for multi-mode haptic display. Meanwhile, the three-dimensional geometric shape, detail texture and outline of the object in the image were extracted by various image processing algorithms. Then, a rendering method for the object in the image was proposed based on the psychophysical experiments on the piezoelectric ceramic actuator. The 3D geometric shape, detail texture and outline of the object were rendered by force and vibration tactile feedbacks, respectively. Finally, these three features of the image were haptic expressed simultaneously by the integrated device. Haptic perception experiment results show that the multi-mode haptic display method can effectively improve the authenticity of haptic perception.


Author(s):  
Thomas A. Furness III ◽  
Woodrow Barfield

We understand from the anthropologists that almost from the beginning of our species we have been tool builders. Most of these tools have been associated with the manipulation of matter. With these tools we have learned to organize or reorganize and arrange the elements for our comfort, safety, and entertainment. More recently, the advent of the computer has given us a new kind of tool. Instead of manipulating matter, the computer allows us to manipulate symbols. Typically, these symbols represent language or other abstractions such as mathematics, physics, or graphical images. These symbols allow us to operate at a different conscious level, providing a mechanism to communicate ideas as well as to organize and plan the manipulation of matter that will be accomplished by other tools. However, a problem with the current technology that we use to manipulate symbols is the interface between the human and computer. That is, the means by which we interact with the computer and receive feedback that our actions, thoughts, and desires are recognized and acted upon. Another problem with current computing systems is the format with which they display information. Typically, the computer, via a display monitor, only allows a limited two-dimensional view of the three-dimensional world we live in. For example, when using a computer to design a three dimensional building, what we see and interact with is often only a two-dimensional representation of the building, or at most a so-called 2½D perspective view. Furthermore, unlike the sounds in the real world which stimulate us from all directions and distances, the sounds emanating from a computer originate from a stationary speaker, and when it comes to touch, with the exception of a touch screen or the tactile feedback provided by pressing a key or mouse button (limited haptic feedback to be sure), the tools we use to manipulate symbols are primitive at best. This book is about a new and better way to interact with and manipulate symbols. These are the technologies associated with virtual environments and what we term advanced interfaces. In fact, the development of virtual environment technologies for interacting with and manipulating symbols may represent the next step in the evolution of tools.


Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 154 ◽  
Author(s):  
Rosanna Maria Viglialoro ◽  
Sara Condino ◽  
Giuseppe Turini ◽  
Marina Carbone ◽  
Vincenzo Ferrari ◽  
...  

Literature shows an increasing interest for the development of augmented reality (AR) applications in several fields, including rehabilitation. Current studies show the need for new rehabilitation tools for upper extremity, since traditional interventions are less effective than in other body regions. This review aims at: Studying to what extent AR applications are used in shoulder rehabilitation, examining wearable/non-wearable technologies employed, and investigating the evidence supporting AR effectiveness. Nine AR systems were identified and analyzed in terms of: Tracking methods, visualization technologies, integrated feedback, rehabilitation setting, and clinical evaluation. Our findings show that all these systems utilize vision-based registration, mainly with wearable marker-based tracking, and spatial displays. No system uses head-mounted displays, and only one system (11%) integrates a wearable interface (for tactile feedback). Three systems (33%) provide only visual feedback; 66% present visual-audio feedback, and only 33% of these provide visual-audio feedback, 22% visual-audio with biofeedback, and 11% visual-audio with haptic feedback. Moreover, several systems (44%) are designed primarily for home settings. Three systems (33%) have been successfully evaluated in clinical trials with more than 10 patients, showing advantages over traditional rehabilitation methods. Further clinical studies are needed to generalize the obtained findings, supporting the effectiveness of the AR applications.


2019 ◽  
Author(s):  
Jeroen B. J. Smeets ◽  
Eli Brenner

Illusions are characterized by inconsistencies. For instance, in the motion aftereffect, we see motion without an equivalent change in position. We used a simple pencil-and-paper experiment to determine whether illusions that influence an object’s apparent size give rise to equivalent changes in apparent positions along the object’s outline. We found different results for two equally strong size illusions. The Ebbinghaus illusion affected perceived positions in a way that was consistent with its influence on perceived size, but a modified diagonal illusion did not affect perceived positions. This difference between the illusions might explain why there are so many conflicting reports about the effects of size illusions on the maximum grip aperture during reach-to-grasp movements.


2015 ◽  
Vol 10 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Giuseppe Meccariello ◽  
Federico Faedi ◽  
Saleh AlGhamdi ◽  
Filippo Montevecchi ◽  
Elisabetta Firinu ◽  
...  

Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


Author(s):  
Wakana Ishihara ◽  
Karen Moxon ◽  
Sheryl Ehrman ◽  
Mark Yarborough ◽  
Tina L. Panontin ◽  
...  

This systematic review addresses the plausibility of using novel feedback modalities for brain–computer interface (BCI) and attempts to identify the best feedback modality on the basis of the effectiveness or learning rate. Out of the chosen studies, it was found that 100% of studies tested visual feedback, 31.6% tested auditory feedback, 57.9% tested tactile feedback, and 21.1% tested proprioceptive feedback. Visual feedback was included in every study design because it was intrinsic to the response of the task (e.g. seeing a cursor move). However, when used alone, it was not very effective at improving accuracy or learning. Proprioceptive feedback was most successful at increasing the effectiveness of motor imagery BCI tasks involving neuroprosthetics. The use of auditory and tactile feedback resulted in mixed results. The limitations of this current study and further study recommendations are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Majid Panahi ◽  
Ramin Jamali ◽  
Vahideh Farzam Rad ◽  
Mojtaba Khorasani ◽  
Ahamd Darudi ◽  
...  

AbstractIn several phenomena in biology and industry, it is required to understand the comprehensive behavior of sedimenting micro-particles in fluids. Here, we use the numerical refocusing feature of digital holographic microscopy (DHM) to investigate the slippage effect on micro-particle sedimentation near a flat wall. DHM provides quantitative phase contrast and three-dimensional (3D) imaging in arbitrary time scales, which suggests it as an elegant approach to investigate various phenomena, including dynamic behavior of colloids. 3D information is obtained by post-processing of the recorded digital holograms. Through analysis of 3D trajectories and velocities of multiple sedimenting micro-particles, we show that proximity to flat walls of higher slip lengths causes faster sedimentation. The effect depends on the ratio of the particle size to (1) the slip length and (2) its distance to the wall. We corroborate our experimental findings by a theoretical model which considers both the proximity and the particle interaction to a wall of different hydrophobicity in the hydrodynamic forces.


Sign in / Sign up

Export Citation Format

Share Document