scholarly journals Activity-dependent differences in function between proximal and distal Schaffer collaterals

2015 ◽  
Vol 113 (10) ◽  
pp. 3646-3662 ◽  
Author(s):  
Benjamin Owen ◽  
Lawrence M. Grover

Axon conduction fidelity is important for signal transmission and has been studied in various axons, including the Schaffer collateral axons of the hippocampus. Previously, we reported that high-frequency stimulation (HFS) depresses Schaffer collateral excitability when assessed by whole-cell recordings from CA3 pyramidal cells but induces biphasic excitability changes (increase followed by decrease) in extracellular recordings of CA1 fiber volleys. Here, we examined responses from proximal (whole-cell or field-potential recordings from CA3 pyramidal cell somata) and distal (field-potential recordings from CA1 stratum radiatum) portions of the Schaffer collaterals during HFS and burst stimulation in hippocampal slices. Whole-cell and dual-field-potential recordings using 10–100-Hz HFS revealed frequency-dependent changes like those previously described, with higher frequencies producing more drastic changes. Dual-field-potential recordings revealed substantial differences in the response to HFS between proximal and distal regions of the Schaffer collaterals, with proximal axons depressing more strongly and only distal axons showing an initial excitability increase. Because CA3 pyramidal neurons normally fire in short bursts rather than long high-frequency trains, we repeated the dual recordings using 100–1,000-ms interval burst stimulation. Burst stimulation produced changes similar to those during HFS, with shorter intervals causing more drastic changes and substantial differences observed between proximal and distal axons. We suggest that functional differences between proximal and distal Schaffer collaterals may allow selective filtering of nonphysiological activity while maximizing successful conduction of physiological activity throughout an extensive axonal arbor.

Author(s):  
Wickliffe C Abraham ◽  
Regina Uta Hegemann

Cell firing has been reported to variably up- or down-regulate subsequently induced long-term potentiation (LTP). The aim of this study was to elucidate the parameters critical to driving each direction of the metaplasticity effect. The main focus was on the commonly used theta-burst stimulation (TBS) and high-frequency stimulation (HFS) protocols that are known to trigger distinct intracellular signalling cascades. To study action potential (AP)-induced metaplasticity, we used intracellular recordings from CA1 pyramidal cells of rat hippocampal slices. Somatic current injections were used to induce theta-burst firing (TBF) or high-frequency firing (HFF) for priming purposes, while LTP was induced 15 min later via TBS of Schaffer collaterals in stratum radiatum. TBS-LTP was inhibited by both priming protocols. Conversely, HFS-LTP was facilitated by HFF priming but not affected by TBF priming. Interestingly, both priming protocols reduced AP firing during TBS-LTP induction and this effect correlated with the reduction of TBS-LTP. However, LTP was not rescued by restoring AP firing with somatic current injections during the TBS. Analysis of intrinsic properties revealed few changes, apart from a priming-induced increase in the medium after-hyperpolarisation (HFF priming) and a decrease in the EPSP amplitude/slope ratio (TBF priming) which could in principle contribute to the inhibition of TBS-LTP by reducing depolarisation and associated Ca2+ influx following synaptic activity or AP backpropagation. Overall, these data indicate that the more physiological TBS protocol for inducing LTP is particularly susceptible to homeostatic feedback inhibition by prior bouts of postsynaptic cell firing.


1999 ◽  
Vol 81 (3) ◽  
pp. 1192-1198 ◽  
Author(s):  
Michael F. Jackson ◽  
Barbara Esplin ◽  
Radan C̆apek

Inhibitory nature of tiagabine-augmented GABAA receptor–mediated depolarizing responses in hippocampal pyramidal cells. Tiagabine is a potent GABA uptake inhibitor with demonstrated anticonvulsant activity. GABA uptake inhibitors are believed to produce their anticonvulsant effects by prolonging the postsynaptic actions of GABA, released during episodes of neuronal hyperexcitability. However, tiagabine has recently been reported to facilitate the depolarizing actions of GABA in the CNS of adult rats following the stimulation of inhibitory pathways at a frequency (100 Hz) intended to mimic interneuronal activation during epileptiform activity. In the present study, we performed extracellular and whole cell recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the functional consequences of tiagabine-augmented GABA-mediated depolarizing responses. Orthodromic population spikes (PSs), elicited from the stratum radiatum, were inhibited following the activation of recurrent inhibitory pathways by antidromic conditioning stimulation of the alveus, which consisted of either a single stimulus or a train of stimuli delivered at high-frequency (100 Hz, 200 ms). The inhibition of orthodromic PSs produced by high-frequency conditioning stimulation (HFS), which was always of much greater strength and duration than that produced by a single conditioning stimulus, was greatly enhanced following the bath application of tiagabine (2–100 μM). Thus, in the presence of tiagabine (20 μM), orthodromic PSs, evoked 200 and 800 ms following HFS, were inhibited to 7.8 ± 2.6% (mean ± SE) and 34.4 ± 18.5% of their unconditioned amplitudes compared with only 35.4 ± 12.7% and 98.8 ± 12.4% in control. Whole cell recordings revealed that the bath application of tiagabine (20 μM) either caused the appearance or greatly enhanced the amplitude of GABA-mediated depolarizing responses (DR). Excitatory postsynaptic potentials (EPSPs) evoked from stratum radiatum at time points that coincided with the DR were inhibited to below the threshold for action-potential firing. Independently of the stimulus intensity with which they were evoked, the charge transferred to the soma by excitatory postsynaptic currents (EPSCs), elicited in the presence of tiagabine (20 μM) during the large (1,428 ± 331 pA) inward currents that underlie the DRs, was decreased on the average by 90.8 ± 1.7%. Such inhibition occurred despite the presence of the GABAB receptor antagonist, CGP 52 432 (10 μM), indicating that GABAB heteroreceptors, located on glutamatergic terminals, do not mediate the observed reduction in the amplitude of excitatory postsynaptic responses. The present results suggest that despite facilitating the induction of GABA-mediated depolarizations, tiagabine application may nevertheless increase the effectiveness of synaptic inhibition during the synchronous high-frequency activation of inhibitory interneurons by enhanced shunting.


1997 ◽  
Vol 78 (5) ◽  
pp. 2582-2591 ◽  
Author(s):  
Karri Lamsa ◽  
Kai Kaila

Lamsa, Karri and Kai Kaila. Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. J. Neurophysiol. 78: 2582–2591, 1997. Ion-selective (H+ and K+) microelectrode techniques as well as conventional extra- and intracellular recordings were used to study the ionic mechanisms of propagating spontaneous GABAergic events (SGEs) in rat hippocampal slices exposed to 4-aminopyridine (4-AP, 50–100 μM). All experiments were made in the presence of antagonists of ionotropic glutamate receptors [10 μM 6-nitro-7-sulphamoylbenzoquinoxaline-2,3-dione (NBQX) and 40 μM dl-2-amino-5-phosphonopentanoic acid (AP5)]. The SGEs were composed of a negative-going change in field potential with a temporally coincident increase (0.7 ± 0.3 mM; mean ± SE) in extracellular K+ ([K+]o) and an alkaline transient (0.01–0.08 units) in extracellular pH (pHo) in stratum radiatum of the area CA1. Simultaneous intracellular recordings showed a triphasic hyperpolarization-depolarization–late hyperpolarization response in pyramidal cells. Application of pentobarbital sodium (PB, 100 μM) decreased the interval between SGEs from a mean value of 35 to ∼20 s and shortened the period of refractoriness of stimulus-evoked propagating events. This was accompanied by an increase in the amplitude of the field potential response of the [K+]o and the pHo shifts and of the depolarizing phase of the pyramidal-cell response. The SGEs were completely blocked by the γ-aminobutyric acid-A (GABAA) receptor antagonist, picrotoxin (PiTX; 100 μM). The amplitudes of the negative-going field potential and of the depolarizing phase of the pyramidal-cell response as well as the ionic shifts associated with SGEs were strongly suppressed in the nominal absence of CO2/HCO− 3. There was a five-fold increase in the interevent interval, and propagating SGEs could not be evoked by stimuli given at intervals shorter than ∼2–3 min. Exposure to inhibitors of carbonic anhydrase, benzolamide (BA; 10 μM) or ethoxyzolamide (EZA; 50 μM) fully blocked the alkaline pHo transients and turned them into acid shifts. The poorly membrane-permeant BA had no discernible effect on the other components of the SGEs, but application of EZA had effects reminiscent to those of CO2/HCO− 3-free medium. Addition of the GABAA receptor–permeant weak-acid anion, formate (20 mM) reestablished the SGEs that were first suppressed by exposure to the CO2/HCO− 3-free medium. No SGEs were seen in the presence of a similar concentration of the GABAA receptor–impermeant anion propionate. Unlike the alkaline transients associated with HCO− 3-driven SGEs, those supported by formate were not blocked by BA. The present data suggest that an inward current carried by bicarbonate is necessary for the generation of SGEs and that the GABAA receptor–mediated excitatory coupling among GABAergic interneurons is essentially dependent on the availability of intracellular bicarbonate.


2003 ◽  
Vol 358 (1432) ◽  
pp. 689-693 ◽  
Author(s):  
Toshiyuki Hosokawa ◽  
Masaki Ohta ◽  
Takeshi Saito ◽  
Alan Fine

Spatio-temporal patterns of neuronal activity before and after the induction of long-term potentiation in mouse hippocampal slices were studied using a real-time high-resolution optical recording system. After staining the slices with voltage-sensitive dye, transmitted light images and extracellular field potentials were recorded in response to stimuli applied to CA1 stratum radiatum. Optical and electrical signals in response to single test pulses were enhanced for at least 30 minutes after brief high-frequency stimulation at the same site. In two-pathway experiments, potentiation was restricted to the tetanized pathway. The optical signals demonstrated that both the amplitude and area of the synaptic response were increased, in patterns not predictable from the initial, pretetanus, pattern of activation. Optical signals will be useful for investigating spatio-temporal patterns of synaptic enhancement underlying information storage in the brain.


1986 ◽  
Vol 56 (2) ◽  
pp. 409-423 ◽  
Author(s):  
A. Konnerth ◽  
U. Heinemann ◽  
Y. Yaari

Epileptiform activity induced in rat hippocampal slices by lowering extracellular Ca2+ concentration ([Ca2+]o) was studied with extracellular and intracellular recordings. Perfusing the slices with low Ca2+ (less than or equal to 0.2 mM) or EGTA-containing solutions blocked the synaptic responses of hippocampal pyramidal cells (HPCs). Despite the block, spontaneous paroxysms, termed seizurelike events (SLEs), appeared in the CA1 area and then recurred regularly at a stable frequency. Transient hypoxia accelerated their development and increased their frequency. When [Ca2+]o was raised in a stepwise manner, the SLEs disappeared at 0.3 mM. With extracellular recording from the CA1 stratum pyramidale, a SLE was characterized by a large negative shift in the field potential, which lasted for several seconds. During this period a large population of CA1 neurons discharged intensely and often in synchrony, as concluded from the frequent appearance of population spikes. Synchronization, however, was not a necessary precursor for the development of paroxysmal activity, but seemed to be the end result of massive neuronal excitation. The cellular counterpart of a SLE, as revealed by intracellular recording from HPCs in the discharge zone of the paroxysms, was a long-lasting depolarization shift (LDS) of up to 20 mV. This was accompanied by accelerated firing of the neuron. A prolonged after-hyperpolarization succeeded each LDS and arrested cell firing. Brief (approximately 50 ms) bursts were commonly observed before LDS onset. Single electrical stimuli applied focally to the stratum pyramidale or alveus evoked paroxysms identical to the spontaneous SLEs, provided they surpassed a critical threshold intensity. Subthreshold stimuli elicited only small local responses, whereas stimuli of varied suprathreshold intensities evoked the same maximal SLEs. Thus the buildup of a SLE is an all or nothing or a regenerative process, which mobilizes the majority, if not all, of the local neuronal population. Each SLE was followed by absolute and relative refractory periods during which focal stimulation was, respectively, ineffective and less effective in evoking a maximal SLE. In most slices the spontaneous SLEs commenced at a "focus" located in the CA1a subarea (near the subiculum). SLEs evoked by focal stimulation arose near the stimulating electrode. From their site of origin the paroxysmal discharges spread transversely through the entire CA1 area at a mean velocity of 1.74 mm/s. Consequently, the discharge zone of a SLE could encompass for several seconds the entire CA1 area.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (5) ◽  
pp. 2964-2972 ◽  
Author(s):  
Roman Tyzio ◽  
Anton Ivanov ◽  
Cristophe Bernard ◽  
Gregory L. Holmes ◽  
Yehezkiel Ben-Ari ◽  
...  

A depolarized resting membrane potential has long been considered to be a universal feature of immature neurons. Despite the physiological importance, the underlying mechanisms of this developmental phenomenon are poorly understood. Using perforated-patch, whole cell, and cell-attached recordings, we measured the membrane potential in CA3 pyramidal cells in hippocampal slices from postnatal rats. With gramicidin perforated-patch recordings, membrane potential was –44 ± 4 (SE) mV at postnatal days P0–P2, and it progressively shifted to –67 ± 2 mV at P13–15. A similar developmental change of the membrane potential has been also observed with conventional whole cell recordings. However, the value of the membrane potential deduced from the reversal potential of N-methyl-d-aspartate channels in cell-attached recordings did not change with age and was –77 ± 2 mV at P2 and –77 ± 2 mV at P13–14. The membrane potential measured using whole cell recordings correlated with seal and input resistance, being most depolarized in neurons with high, several gigaohms, input resistance and low seal resistance. Simulations revealed that depolarized values of the membrane potential in whole cell and perforated-patch recordings could be explained by a shunt through the seal contact between the pipette and membrane. Thus the membrane potential of CA3 pyramidal cells appears to be strongly negative at birth and does not change during postnatal development.


1986 ◽  
Vol 56 (6) ◽  
pp. 1718-1738 ◽  
Author(s):  
J. W. Swann ◽  
R. J. Brady ◽  
R. J. Friedman ◽  
E. J. Smith

Experiments were performed in order to identify the sites of epileptiform burst generation in rat hippocampal CA3 pyramidal cells. A subsequent slow field potential was studied, which is associated with afterdischarge generation. Laminar field potential and current source-density (CSD) methods were employed in hippocampal slices exposed to penicillin. Simultaneous intracellular and extracellular field recordings from the CA3 pyramidal cell body layer showed that whenever an epileptiform burst was recorded extracellularly, individual CA3 neurons underwent an intense depolarization shift. In extracellular records a slow negative field potential invariably followed epileptiform burst generation. In approximately 10% of slices, synchronous afterdischarges rode on the envelope of this negative field potential. Intracellularly a depolarizing afterpotential followed the depolarization shift and was coincident with the extracellular slow negative field potential. A one-dimensional CSD analysis performed perpendicular to the CA3 cell body layer showed that during epileptiform burst generation large current sinks occur simultaneously in the central portions of both the apical and basilar dendrites. The average distance of the peak amplitude for these sinks from the center of the cell body layer was 175 +/- 46.8 microns and 158 +/- 25.0 microns, respectively. A large current source was recorded in the cell body layer. Smaller current sources were observed in the distal portions of the dendritic layers. During the postburst slow field potential a current sink was recorded at the edge of the cell body layer in stratum oriens--a region referred to as the infrapyramidal zone. Simultaneous with the current sink recorded there, smaller sinks were often observed in the dendritic layers that appeared to be "tails" or prolongations of the currents underlying burst generation. Two-dimensional analyses of these field potentials were performed on planes parallel and perpendicular to the exposed surface of the slice. Isopotential contours showed that the direction of extracellular current is mainly orthogonal to the CA3 laminae. Correction of CSD estimates made perpendicular to the cell body layer for current flowing in the other direction did not alter the location of computed current sources and sinks. In order to show that the dendritic currents associated with epileptiform burst generation were active sinks, tetrodotoxin (TTX) was applied locally to the dendrites where the current sinks were recorded.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (3) ◽  
pp. 1018-1029 ◽  
Author(s):  
M. Avoli ◽  
C. Psarropoulou ◽  
V. Tancredi ◽  
Y. Fueta

1. Extracellular field potential and intracellular recordings were made in the CA3 subfield of hippocampal slices obtained from 10- to 24-day-old rats during perfusion with artificial cerebrospinal fluid (ACSF) containing the convulsant 4-aminopyridine (4-AP, 50 microM). 2. Three types of spontaneous, synchronous activity were recorded in the presence of 4-AP by employing extracellular microelectrodes positioned in the CA3 stratum (s.) radiatum: first, inter-ictal-like discharges that lasted 0.2-1.2 s and had an occurrence rate of 0.3-1.3 Hz; second, ictal-like events (duration: 3-40 s) that occurred at 4-38 x 10(-3) Hz; and third, large-amplitude (up to 8 mV) negative-going potentials that preceded the onset of the ictal-like events and thus appeared to initiate them. 3. None of these synchronous activities was consistently modified by addition of antagonists of the N-methyl-D-aspartate (NMDA) receptor to the ACSF. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-10 microM) reversibly blocked interictal- and ictallike discharges. The only synchronous, spontaneous activity recorded in this type of medium consisted of the negative-going potentials that were abolished by the GABAA receptor antagonists bicuculline methiodide (5-20 microM) or picrotoxin (50 microM). Hence they were mediated through the activation of the GABAA receptor. 4. Profile analysis of the 4-AP-induced synchronous activity revealed that the gamma-aminobutyric acid (GABA)-mediated field potential had maximal negative amplitude in s. lacunosum-moleculare, attained equipotentiality at the border between s. radiatum and s. pyramidale, and became positive-going in s. oriens. These findings indicated that the GABA-mediated field potential presumably represented a depolarization occurring in the dendrites of CA3 pyramidal cells. 5. This conclusion was supported by intracellular analysis of the 4-AP-induced activity. The GABA-mediated potential was reflected by a depolarization of the membrane of CA3 pyramidal cells that triggered a few variable-amplitude, fractionated spikes or fast action potentials. By contrast, the ictal-like discharge was associated with a prolonged depolarization during which repetitive bursts of action potentials occurred. Short-lasting depolarizations with bursts of action potentials occurred during each interictal-like discharge. 6. The GABA-mediated potential recorded intracellularly in the presence of CNQX consisted of a prolonged depolarization (up to 12 s) that was still capable of triggering a few fast action potentials and/or fractionated spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


Sign in / Sign up

Export Citation Format

Share Document