Prior experience does not alter modulation of cutaneous reflexes during manual wheeling and symmetrical arm cycling

2013 ◽  
Vol 109 (9) ◽  
pp. 2345-2353 ◽  
Author(s):  
Megan K. MacGillivray ◽  
Marc Klimstra ◽  
Bonita Sawatzky ◽  
E. Paul Zehr ◽  
Tania Lam

Previous research has reported that training and experience influence H-reflex amplitude during rhythmic activity; however, little research has yet examined the influence of training on cutaneous reflexes. Manual wheelchair users (MWUs) depend on their arms for locomotion. We postulated that the daily dependence and high amount of use of the arms for mobility in MWUs would show differences in cutaneous reflex modulation during upper limb cyclic movements compared with able-bodied control subjects. We hypothesized that MWUs would demonstrate increased reflex response amplitudes for both manual wheeling and symmetrical arm cycling tasks. The superficial radial nerve was stimulated randomly at different points of the movement cycle of manual wheeling and symmetrical arm cycling in MWUs and able-bodied subjects naive to wheeling. Our results showed that there were no differences in amplitude modulation of early- or middle-latency cutaneous reflexes between the able-bodied group and the MWU group. However, there were several differences in amplitude modulation of cutaneous reflexes between tasks (manual wheeling and symmetrical arm cycling). Specifically, differences were observed in early-latency responses in the anterior and posterior deltoid muscles and biceps and triceps brachii as well as in middle-latency responses in the anterior and posterior deltoid. These data suggest that manual wheeling experience does not modify the pattern of cutaneous reflex amplitude modulation during manual wheeling. The differences in amplitude modulation of cutaneous reflexes between tasks may be a result of mechanical differences (i.e., hand contact) between tasks.

2012 ◽  
Vol 108 (3) ◽  
pp. 891-905 ◽  
Author(s):  
E. Paul Zehr ◽  
Pamela M. Loadman ◽  
Sandra R. Hundza

Disordered reflex activity and alterations in the neural control of walking have been observed after stroke. In addition to impairments in leg movement that affect locomotor ability after stroke, significant impairments are also seen in the arms. Altered neural control in the upper limb can often lead to altered tone and spasticity resulting in impaired coordination and flexion contractures. We sought to address the extent to which the neural control of movement is disordered after stroke by examining the modulation pattern of cutaneous reflexes in arm muscles during arm cycling. Twenty-five stroke participants who were at least 6 mo postinfarction and clinically stable, performed rhythmic arm cycling while cutaneous reflexes were evoked with trains (5 × 1.0-ms pulses at 300 Hz) of constant-current electrical stimulation to the superficial radial (SR) nerve at the wrist. Both the more (MA) and less affected (LA) arms were stimulated in separate trials. Bilateral electromyography (EMG) activity was recorded from muscles acting at the shoulder, elbow, and wrist. Analysis was conducted on averaged reflexes in 12 equidistant phases of the movement cycle. Phase-modulated cutaneous reflexes were present, but altered, in both MA and LA arms after stroke. Notably, the pattern was “blunted” in the MA arm in stroke compared with control participants. Differences between stroke and control were progressively more evident moving from shoulder to wrist. The results suggest that a reduced pattern of cutaneous reflex modulation persists during rhythmic arm movement after stroke. The overall implication of this result is that the putative spinal contributions to rhythmic human arm movement remain accessible after stroke, which has translational implications for rehabilitation.


2005 ◽  
Vol 93 (1) ◽  
pp. 633-640 ◽  
Author(s):  
E. Paul Zehr ◽  
Sandra R. Hundza

It was shown some time ago that cutaneous reflexes were phase-reversed when comparing forward and backward treadmill walking. Activity of central-pattern-generating networks (CPG) regulating neural activity for locomotion was suggested as a mechanism involved in this “program reversal.” We have been investigating the neural control of arm movements and the role for CPG mechanisms in regulating rhythmic arm cycling. The purpose of this study was to evaluate the pattern of muscle activity and reflex modulation when comparing forward and backward arm cycling. During rhythmic arm cycling (forward and backward), cutaneous reflexes were evoked with trains (5 × 1.0 ms pulses at 300 Hz) of electrical stimulation delivered to the superficial radial (SR) nerve at the wrist. Electromyographic (EMG) recordings were made bilaterally from muscles acting at the shoulder, elbow, and wrist. Analysis was conducted on specific sections of the movement cycle after phase-averaging contingent on the timing of stimulation in the movement cycle. EMG patterns for rhythmic arm cycling are similar during both forward and backward motion. Cutaneous reflex amplitudes were similarly modulated at both early and middle latency irrespective of arm cycling direction. That is, at similar phases in the movement cycle, responses of corresponding sign and amplitude were seen regardless of movement direction. The results are generally parallel to the observations seen in leg muscles after stimulation of cutaneous nerves in the foot during forward and backward walking and provide further evidence for CPG activity contributing to neural activation and reflex modulation during rhythmic arm movement.


Author(s):  
Syusaku SASADA ◽  
Toshiki Tazoe ◽  
Tsuyoshi Nakajima ◽  
Shigeki Omori ◽  
Genki Futatsubashi ◽  
...  

Low-intensity electrical stimulation of the common peroneal nerve (CPN) evokes a short latency reflex in the heteronymous knee extensor muscles (referred to as CPN-reflex). The CPN-reflex is facilitated at a heel strike during walking, contributing to body weight support. However, the origin of the CPN-reflex increase during walking remains unclear. We speculate that this increase originates from multiple sources due to a body of evidence suggesting the presence of neural coupling between the arms and legs. Therefore, we investigated the extent to which the CPN-reflex is modulated during rhythmic arm cycling. Twenty-eight subjects sat in an armchair and were asked to perform arm cycling at a moderate cadence using a stationary ergometer while performing isometric contraction of the knee extensors, such that the CPN-reflex was evoked. CPN-reflex was evoked by stimulating the CPN (0.9-2.0 × the motor threshold [MT] in the tibialis anterior muscle) at the level of the neck of the fibula. The CPN-reflex amplitude was measured from the vastus lateralis (VL). The biphasic reflex response in the VL was evoked within 27-45 ms following CPN stimulation. The amplitude of the CPN-reflex increased during arm cycling compared with that before cycling. The modulation of the CPN-reflex during arm cycling was detected only for CPN stimulation intensity around 1.2 × MT. Furthermore, CPN-reflex modulation was not observed during the isometric contraction of the arm or passive arm cycling. Our results suggest the presence of neural coupling between the CPN-reflex pathways and neural systems generating locomotive arm movement.


2012 ◽  
Vol 108 (11) ◽  
pp. 3049-3058 ◽  
Author(s):  
S. R. Hundza ◽  
Geoff C. de Ruiter ◽  
M. Klimstra ◽  
E. Paul Zehr

Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven (“Active”) and externally driven (“Passive”) arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.


2018 ◽  
Vol 119 (3) ◽  
pp. 1095-1112 ◽  
Author(s):  
Chelsea Kaupp ◽  
Gregory E. P. Pearcey ◽  
Taryn Klarner ◽  
Yao Sun ◽  
Hilary Cullen ◽  
...  

Training locomotor central pattern-generating networks (CPGs) through arm and leg cycling improves walking in chronic stroke. These outcomes are presumed to result from enhanced interlimb connectivity and CPG function. The extent to which rhythmic arm training activates interlimb CPG networks for locomotion remains unclear and was assessed by studying chronic stroke participants before and after 5 wk of arm cycling training. Strength was assessed bilaterally via maximal voluntary isometric contractions in the legs and hands. Muscle activation during arm cycling and transfer to treadmill walking were assessed in the more affected (MA) and less affected (LA) sides via surface electromyography. Changes to interlimb coupling during rhythmic movement were evaluated using modulation of cutaneous reflexes elicited by electrical stimulation of the superficial radial nerve at the wrist. Bilateral soleus stretch reflexes were elicited at rest and during 1-Hz arm cycling. Clinical function tests assessed walking, balance, and motor function. Results show significant changes in function and neurophysiological integrity. Training increased bilateral grip strength, force during MA plantarflexion, and muscle activation. “Normalization” of cutaneous reflex modulation was found during arm cycling. There was enhanced activity in the dorsiflexor muscles on the MA side during the swing phase of walking. Enhanced interlimb coupling was shown by increased modulation of MA soleus stretch reflex amplitudes during arm cycling after training. Clinical evaluations showed enhanced walking ability and balance. These results are consistent with training-induced changes in CPG function and interlimb connectivity and underscore the need for arm training in the functional rehabilitation of walking after neurotrauma.NEW & NOTEWORTHY It has been suggested but not tested that training the arms may influence rehabilitation of walking due to activation of interneuronal patterning networks after stroke. We show that arm cycling training improves strength, clinical function, coordination of muscle activity during walking, and neurological connectivity between the arms and the legs. The arms can, in fact, give the legs a helping hand in rehabilitation of walking after stroke.


2016 ◽  
Vol 116 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Tsuyoshi Nakajima ◽  
Shinya Suzuki ◽  
Genki Futatsubashi ◽  
Hiroyuki Ohtsuska ◽  
Rinaldo A. Mezzarane ◽  
...  

During walking, cutaneous reflexes in ankle flexor muscle [tibialis anterior (TA)] evoked by tibial nerve (TIB) stimulation are predominantly facilitatory at early swing phase but reverse to suppression at late swing phase. Although the TIB innervates a large portion of the skin of the foot sole, the extent to which specific foot-sole regions contribute to the reflex reversals during walking remains unclear. Therefore, we investigated regional cutaneous contributions from discrete portions of the foot sole on reflex reversal in TA following TIB stimulation during walking. Summation effects on reflex amplitudes, when applying combined stimulation from foot-sole regions with TIB, were examined. Middle latency responses (MLRs; 70–120 ms) after TIB stimulation were strongly facilitated during the late stance to mid-swing phases and reversed to suppression just before heel (HL) strike. Both forefoot-medial (f-M) and forefoot-lateral stimulation in the foot sole induced facilitation during stance-to-swing transition phases, but HL stimulation evoked suppression during the late stance to the end of swing phases. At the stance-to-swing transition, a summation of MLR amplitude occurred only for combined f-M&TIB stimulation. However, the same was not true for the combined HL&TIB stimulation. At the swing-to-stance transition, there was a suppressive reflex summation only for HL&TIB stimulation. In contrast, this summation was not observed for the f-M&TIB stimulation. Our results suggest that reflex reversals evoked by TIB stimulation arise from distinct reflex pathways to TA produced by separate afferent populations innervating specific regions of the foot sole.


2020 ◽  
Author(s):  
Angèle N Merlet ◽  
Jonathan Harnie ◽  
Madalina Macovei ◽  
Adam Doelman ◽  
Nathaly Gaudreault ◽  
...  

AbstractIt is well known that mechanically stimulating the perineal region potently facilitates hindlimb locomotion and weight support in mammals with a spinal transection (spinal mammals). However, how perineal stimulation mediates this excitatory effect is poorly understood. We evaluated the effect of mechanically stimulating (vibration or pinch) the perineal region on ipsilateral (9-14 ms onset) and contralateral (14-18 ms onset) short-latency cutaneous reflex responses evoked by electrically stimulating the superficial peroneal or distal tibial nerve in seven adult spinal cats where hindlimb movement was restrained. Cutaneous reflexes were evoked before, during, and after mechanical stimulation of the perineal region. We found that vibration or pinch of the perineal region effectively triggered rhythmic activity, unilateral and bilateral to nerve stimulation. When electrically stimulating nerves, adding perineal stimulation modulated rhythmic activity by decreasing cycle and burst durations and by increasing the amplitude of flexors and extensors. Perineal stimulation also disrupted the timing of the ipsilateral rhythm, which had been entrained by nerve stimulation. Mechanically stimulating the perineal region decreased ipsilateral and contralateral short-latency reflex responses evoked by cutaneous inputs, a phenomenon we observed in muscles crossing different joints and located in different limbs. The results suggest that the excitatory effect of perineal stimulation on locomotion and weight support is not mediated by increasing cutaneous reflex gain and instead points to an excitation of central pattern-generating circuitry. Our results are consistent with a state-dependent modulation of reflexes by spinal interneuronal circuits.Significance StatementMechanically stimulating the skin of the perineal region strongly facilitates hindlimb locomotion in mammals following a complete spinal cord injury (SCI). Despite its remarkable effectiveness in promoting hindlimb locomotion in spinal cord-injured mammals, we do not know how this is mediated. The present study provides data on how inputs from the perineal region interact with neuronal circuits that generate locomotor-like activity and reflexes from the foot. A better understanding of how inputs from the perineal region interact with neuronal circuits of the spinal cord could lead to non-invasive approaches to restore walking in people with SCI.


2018 ◽  
Vol 120 (6) ◽  
pp. 3172-3186 ◽  
Author(s):  
R. Zhou ◽  
B. Parhizi ◽  
J. Assh ◽  
L. Alvarado ◽  
R. Ogilvie ◽  
...  

Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.


2020 ◽  
Vol 123 (3) ◽  
pp. 1026-1041
Author(s):  
Angèle N. Merlet ◽  
Jonathan Harnie ◽  
Madalina Macovei ◽  
Adam Doelman ◽  
Nathaly Gaudreault ◽  
...  

Mechanically stimulating the dorsal lumbar region inhibits locomotion and reduces weight support during standing in rabbits and cats. However, how this inhibitory effect from the lumbar skin is mediated is poorly understood. Here we evaluated the effect of mechanically stimulating (vibration or pinch) the dorsal lumbar region on short-latency (8- to 13-ms onset) cutaneous reflex responses, evoked by electrically stimulating the superficial peroneal or distal tibial nerves, in seven adult cats with a low thoracic spinal transection (spinal cats). Cutaneous reflexes were evoked before, during, and after mechanical stimulation of the dorsal lumbar region. We found that mechanically stimulating the lumbar region by vibration or manual pinch abolished alternating bursts of activity between flexors and extensors initiated by nerve stimulation. The activity of extensor muscles was abolished bilaterally, whereas the activity of some ipsilateral flexor muscles was sustained during vibration/pinch. Mechanically stimulating the lumbar region increased ipsilateral and contralateral short-latency excitatory responses evoked by cutaneous inputs, a phenomenon that was generalized to muscles crossing different joints and located in different limbs. Our results indicate that the inhibitory effect on locomotion and weight support is not mediated by reducing cutaneous reflex gain and instead points to an inhibition of central pattern-generating circuitry, particularly the extensor component. The results provide greater insight into interactions between different types of somatosensory inputs within spinal motor circuits. NEW & NOTEWORTHY Vibration or pinch of the lumbar region in spinal-transected cats abolished alternating bursts of activity between flexors and extensors initiated by nerve stimulation. Mechanically stimulating the lumbar region increased ipsilateral and contralateral short-latency excitatory responses evoked by cutaneous inputs in hindlimb muscles. Sensory inputs from mechanoreceptors of the lumbar region do not mediate their inhibitory effect on locomotion and weight support by reducing the gain of short-latency excitatory cutaneous reflexes from the foot.


Sign in / Sign up

Export Citation Format

Share Document