interlimb coupling
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 10 (10) ◽  
pp. 724 ◽  
Author(s):  
Harjo J. de Poel ◽  
Melvyn Roerdink ◽  
C. (Lieke) E. Peper ◽  
Peter J. Beek

The stability of rhythmic interlimb coordination is governed by the coupling between limb movements. While it is amply documented how coordinative performance depends on movement frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling (and hence coordinative stability) is actually mediated more by movement amplitude. Here, we present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in question was selected because we found indications that the according results were prone to artifacts, which may have obscured the potential effects of amplitude on the post-perturbation stability of interlimb coordination. We therefore redid the same analysis based on movement signals that were normalized each half-cycle for variations in oscillation center and movement frequency. With this refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas steady-state antiphase coordination became less stable with increasing frequency for prescribed amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes, and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of interlimb coordination.


2019 ◽  
Vol 27 (4) ◽  
pp. 272-289 ◽  
Author(s):  
Kamal Narayan Arya ◽  
Shanta Pandian ◽  
Abhishek Sharma ◽  
Vikas Kumar ◽  
Varun Kumar Kashyap

2019 ◽  
Vol 122 (2) ◽  
pp. 572-584
Author(s):  
Steven Morrison ◽  
Justin J. Kavanagh ◽  
Karl M. Newell

Many experiments have shown independence of the index finger dynamics under bilateral postural tremor protocols. Here we investigated in young adults the dynamics of bilateral multidirectional postural tremor and forearm muscle activity under the progressively fatiguing conditions supporting an external weight to the point of induced postural failure. When no loads were applied, tremor in the vertical (VT) and mediolateral (ML) directions was similar with prominent peaks within 2- to 4-Hz and 8- to 12-Hz bandwidths. Contrastingly tremor in the anterior-posterior (AP) direction was characterized by a single peak between 0 and 2 Hz. Although no tremor coupling occurred cross limbs, strong within-limb coupling was found between ML and VT directions when no loads were applied (coherence range: 0.77–0.85), implying that these oscillations are related and likely derived from mechanical sources. Applying an external load to the index finger(s) led to significant increases in the amplitude of VT tremor and EMG activity within that limb but also caused increases in tremor directions not aligned with the gravitational vector (AP and ML). Significant increases in VT and ML tremor and EMG activity in the contralateral (unloaded) limb were also found when a single index finger was loaded; however, this bilateral increase did not align with increases in interlimb coupling (coherence <0.21). The effects of fatigue caused by prolonged loading were widespread, affecting tremor and muscle activity in both limbs through a combination of neural and mechanical mechanisms. The single- and dual-limb loading to fatigue increased neural overflow but not tremor coupling between the index fingers. NEW & NOTEWORTHY This study investigated bilateral multidirectional tremor under unloaded and loaded conditions. We found that tremor in the mediolateral and vertical directions within a limb were strongly coupled, a result not reported previously. Furthermore, when holding a weight to failure, tremor in all directions increased. Tremor also increased in the contralateral (unloaded) limb despite no interlimb coupling. This contralateral increase in tremor following loading a limb until fatigue is hypothesized to stem from motor-overflow effects.


2018 ◽  
Vol 119 (3) ◽  
pp. 1095-1112 ◽  
Author(s):  
Chelsea Kaupp ◽  
Gregory E. P. Pearcey ◽  
Taryn Klarner ◽  
Yao Sun ◽  
Hilary Cullen ◽  
...  

Training locomotor central pattern-generating networks (CPGs) through arm and leg cycling improves walking in chronic stroke. These outcomes are presumed to result from enhanced interlimb connectivity and CPG function. The extent to which rhythmic arm training activates interlimb CPG networks for locomotion remains unclear and was assessed by studying chronic stroke participants before and after 5 wk of arm cycling training. Strength was assessed bilaterally via maximal voluntary isometric contractions in the legs and hands. Muscle activation during arm cycling and transfer to treadmill walking were assessed in the more affected (MA) and less affected (LA) sides via surface electromyography. Changes to interlimb coupling during rhythmic movement were evaluated using modulation of cutaneous reflexes elicited by electrical stimulation of the superficial radial nerve at the wrist. Bilateral soleus stretch reflexes were elicited at rest and during 1-Hz arm cycling. Clinical function tests assessed walking, balance, and motor function. Results show significant changes in function and neurophysiological integrity. Training increased bilateral grip strength, force during MA plantarflexion, and muscle activation. “Normalization” of cutaneous reflex modulation was found during arm cycling. There was enhanced activity in the dorsiflexor muscles on the MA side during the swing phase of walking. Enhanced interlimb coupling was shown by increased modulation of MA soleus stretch reflex amplitudes during arm cycling after training. Clinical evaluations showed enhanced walking ability and balance. These results are consistent with training-induced changes in CPG function and interlimb connectivity and underscore the need for arm training in the functional rehabilitation of walking after neurotrauma.NEW & NOTEWORTHY It has been suggested but not tested that training the arms may influence rehabilitation of walking due to activation of interneuronal patterning networks after stroke. We show that arm cycling training improves strength, clinical function, coordination of muscle activity during walking, and neurological connectivity between the arms and the legs. The arms can, in fact, give the legs a helping hand in rehabilitation of walking after stroke.


2013 ◽  
Vol 32 (1) ◽  
pp. 79-90 ◽  
Author(s):  
M.J. MacLellan ◽  
K. Qaderdan ◽  
P. Koehestanie ◽  
J. Duysens ◽  
B.J. McFadyen

2010 ◽  
Vol 208 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Rinaldo A. Mezzarane ◽  
Marc Klimstra ◽  
Allen Lewis ◽  
Sandra R. Hundza ◽  
E. Paul Zehr

2008 ◽  
Vol 437 (1) ◽  
pp. 10-14 ◽  
Author(s):  
C. (Lieke) E. Peper ◽  
Betteco J. de Boer ◽  
Harjo J. de Poel ◽  
Peter J. Beek

Sign in / Sign up

Export Citation Format

Share Document