scholarly journals Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity

2011 ◽  
Vol 106 (2) ◽  
pp. 775-787 ◽  
Author(s):  
Matthew S. Lazarus ◽  
Z. Josh Huang

In the rodent primary visual cortex, maturation of GABA inhibitory circuitry is regulated by visual input and contributes to the onset and progression of ocular dominance (OD) plasticity. Cortical inhibitory circuitry consists of diverse groups of GABAergic interneurons, which display distinct physiological properties and connectivity patterns. Whether different classes of interneurons mature with similar or distinct trajectories and how their maturation profiles relate to experience dependent development are not well understood. We used green fluorescent protein reporter lines to study the maturation of two broad classes of cortical interneurons: parvalbumin-expressing (PV) cells, which are fast spiking and innervate the soma and proximal dendrites, and somatostatin-expressing (SOM) cells, which are regular spiking and target more distal dendrites. Both cell types demonstrate extensive physiological maturation, but with distinct trajectories, from eye opening to the peak of OD plasticity. Typical fast-spiking characteristics of PV cells became enhanced, and synaptic signaling from PV to pyramidal neurons became faster. SOM cells demonstrated a large increase in input resistance and a depolarization of resting membrane potential, resulting in increased excitability. While the substantial maturation of PV cells is consistent with the importance of this source of inhibition in triggering OD plasticity, the significant increase in SOM cell excitability suggests that dendrite-targeted inhibition may also play a role in OD plasticity. More generally, these results underscore the necessity of cell type-based analysis and demonstrate that distinct classes of cortical interneurons have markedly different developmental profiles, which may contribute to the progressive emergence of distinct functional properties of cortical circuits.

1994 ◽  
Vol 6 (4) ◽  
pp. 615-621 ◽  
Author(s):  
Geoffrey J. Goodhill ◽  
David J. Willshaw

The elastic net (Durbin and Willshaw 1987) can account for the development of both topography and ocular dominance in the mapping from the lateral geniculate nucleus to primary visual cortex (Goodhill and Willshaw 1990). Here it is further shown for this model that (1) the overall pattern of stripes produced is strongly influenced by the shape of the cortex: in particular, stripes with a global order similar to that seen biologically can be produced under appropriate conditions, and (2) the observed changes in stripe width associated with monocular deprivation are reproduced in the model.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160504 ◽  
Author(s):  
Megumi Kaneko ◽  
Michael P. Stryker

Mechanisms thought of as homeostatic must exist to maintain neuronal activity in the brain within the dynamic range in which neurons can signal. Several distinct mechanisms have been demonstrated experimentally. Three mechanisms that act to restore levels of activity in the primary visual cortex of mice after occlusion and restoration of vision in one eye, which give rise to the phenomenon of ocular dominance plasticity, are discussed. The existence of different mechanisms raises the issue of how these mechanisms operate together to converge on the same set points of activity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


2015 ◽  
Vol 113 (6) ◽  
pp. 1850-1861 ◽  
Author(s):  
Diana C. Rotaru ◽  
Cameron Olezene ◽  
Takeaki Miyamae ◽  
Nadezhda V. Povysheva ◽  
Aleksey V. Zaitsev ◽  
...  

In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primate cortex and, if so, whether these inputs show heterogeneity across GABA neuron subtypes. We thus studied GABAAR-mediated miniature synaptic events in GABAergic interneurons in layer 3 of monkey dorsolateral prefrontal cortex (DLPFC). Interneurons were identified on the basis of their firing pattern as fast spiking (FS), regular spiking (RS), burst spiking (BS), or irregular spiking (IS). Miniature synaptic events were common in all of the recorded interneurons, and the frequency of these events was highest in FS neurons. The amplitude and kinetics of miniature inhibitory postsynaptic potentials (mIPSPs) also differed between DLPFC interneuron subtypes in a manner correlated with their input resistance and membrane time constant. FS neurons had the fastest mIPSP decay times and the strongest effects of the GABAAR modulator zolpidem, suggesting that the distinctive properties of inhibitory synaptic inputs onto FS cells are in part conferred by GABAARs containing α1 subunits. Moreover, mIPSCs differed between FS and RS interneurons in a manner consistent with the mIPSP findings. These results show that in the monkey DLPFC GABAAR-mediated synaptic inputs are prominent in layer 3 interneurons and may differentially regulate the activity of different interneuron subtypes.


2004 ◽  
Vol 92 (5) ◽  
pp. 2947-2959 ◽  
Author(s):  
Miguel Á. Carreira-Perpiñán ◽  
Geoffrey J. Goodhill

Maps of ocular dominance and orientation in primary visual cortex have a highly characteristic structure. The factors that determine this structure are still largely unknown. In particular, it is unclear how short-range excitatory and inhibitory connections between nearby neurons influence structure both within and between maps. Using a generalized version of a well-known computational model of visual cortical map development, we show that the number of excitatory and inhibitory oscillations in this interaction function critically influences map structure. Specifically, we demonstrate that functions that oscillate more than once do not produce maps closely resembling those seen biologically. This strongly suggests that local lateral connections in visual cortex oscillate only once and have the form of a Mexican hat.


2002 ◽  
Vol 87 (4) ◽  
pp. 2190-2194 ◽  
Author(s):  
Enrico Bracci ◽  
Diego Centonze ◽  
Giorgio Bernardi ◽  
Paolo Calabresi

The striatum is the main recipient of dopaminergic innervation. Striatal projection neurons are controlled by cholinergic and GABAergic interneurons. The effects of dopamine on projection neurons and cholinergic interneurons have been described. Its action on GABAergic interneurons, however, is still unknown. We studied the effects of dopamine on fast-spiking (FS) GABAergic interneurons in vitro, with intracellular recordings. Bath application of dopamine elicited a depolarization accompanied by an increase in membrane input resistance (an effect that persisted in the presence of tetrodotoxin) and action-potential discharge. These effects were mimicked by the D1-like dopamine receptor agonist SKF38393 but not by the D2-like agonist quinpirole. Evoked corticostriatal glutamatergic synaptic currents were not affected by dopamine. Conversely, GABAergic currents evoked by intrastriatal stimulation were reversibly depressed by dopamine and D2-like, but not D1-like, agonists. Cocaine elicited effects similar to those of dopamine on membrane potential and synaptic currents. These results show that endogenous dopamine exerts a dual excitatory action on FS interneurons, by directly depolarizing them (through D1-like receptors) and by reducing their synaptic inhibition (through presynaptic D2-like receptors).


1996 ◽  
Vol 732 (1-2) ◽  
pp. 237-241 ◽  
Author(s):  
Luiz Carlos L Silveira ◽  
Fernando Márcio G de Mátos ◽  
Alessandro Pontes-Arruda ◽  
Cristovam W Picanço-Diniz ◽  
José Agusto P Muniz

Sign in / Sign up

Export Citation Format

Share Document