scholarly journals Micropools of reliable area MT neurons explain rapid motion detection

2018 ◽  
Vol 120 (5) ◽  
pp. 2396-2409 ◽  
Author(s):  
Bryan M. Krause ◽  
Geoffrey M. Ghose

Many models of perceptually based decisions postulate that actions are initiated when accumulated sensory signals reach a threshold level of activity. These models have received considerable neurophysiological support from recordings of individual neurons while animals are engaged in motion discrimination tasks. These experiments have found that the activity of neurons in a particular visual area strongly associated with motion processing (MT), when pooled over hundreds of milliseconds, is sufficient to explain behavioral timing and performance. However, this level of pooling may be problematic for urgent perceptual decisions in which rapid detection dictates temporally precise integration. In this paper, we explore the physiological basis of one such task in which macaques detected brief (~70 ms) transients of coherent motion within ~240 ms. We find that a simple linear summation model based on realistic stimulus responses of as few as 40 correlated neurons can predict the reliability and timing of rapid motion detection. The model naturally reproduces a distinctive physiological relationship observed in rapid detection tasks in which the individual neurons with the most reliable stimulus responses are also the most predictive of impending behavioral choices. Remarkably, we observed this relationship across our simulated neuronal populations even when all neurons within the pool were weighted equally with respect to readout. These results demonstrate that small numbers of reliable sensory neurons can dominate perceptual judgments without any explicit reliability based weighting and are sufficient to explain the accuracy, latency, and temporal precision of rapid detection. NEW & NOTEWORTHY Computational and psychophysical models suggest that performance in many perceptual tasks may be based on the preferential sampling of reliable neurons. Recent studies of MT neurons during rapid motion detection, in which only those neurons with the most reliable sensory responses were strongly predictive of the animals’ decisions, seemingly support this notion. Here we show that a simple threshold model without explicit reliability biases can explain both the behavioral accuracy and precision of these detections and the distribution of sensory- and choice-related signals across neurons.

2020 ◽  
Vol 38 (5) ◽  
pp. 395-405
Author(s):  
Luca Battaglini ◽  
Federica Mena ◽  
Clara Casco

Background: To study motion perception, a stimulus consisting of a field of small, moving dots is often used. Generally, some of the dots coherently move in the same direction (signal) while the rest move randomly (noise). A percept of global coherent motion (CM) results when many different local motion signals are combined. CM computation is a complex process that requires the integrity of the middle-temporal area (MT/V5) and there is evidence that increasing the number of dots presented in the stimulus makes such computation more efficient. Objective: In this study, we explored whether anodal direct current stimulation (tDCS) over MT/V5 would increase individual performance in a CM task at a low signal-to-noise ratio (SNR, i.e. low percentage of coherent dots) and with a target consisting of a large number of moving dots (high dot numerosity, e.g. >250 dots) with respect to low dot numerosity (<60 dots), indicating that tDCS favour the integration of local motion signal into a single global percept (global motion). Method: Participants were asked to perform a CM detection task (two-interval forced-choice, 2IFC) while they received anodal, cathodal, or sham stimulation on three different days. Results: Our findings showed no effect of cathodal tDCS with respect to the sham condition. Instead, anodal tDCS improves performance, but mostly when dot numerosity is high (>400 dots) to promote efficient global motion processing. Conclusions: The present study suggests that tDCS may be used under appropriate stimulus conditions (low SNR and high dot numerosity) to boost the global motion processing efficiency, and may be useful to empower clinical protocols to treat visual deficits.


2010 ◽  
Vol 48 (6) ◽  
pp. 1644-1651 ◽  
Author(s):  
Sarah Brieber ◽  
Beate Herpertz-Dahlmann ◽  
Gereon R. Fink ◽  
Inge Kamp-Becker ◽  
Helmut Remschmidt ◽  
...  

2009 ◽  
Vol 21 (11) ◽  
pp. 2129-2138 ◽  
Author(s):  
Elena Salillas ◽  
Demis Basso ◽  
Maurizia Baldi ◽  
Carlo Semenza ◽  
Tomaso Vecchi

It has often been proposed that there is a close link between representation of number and space. In the present work, single-pulse transcranial magnetic stimulation (TMS) was applied to the ventral intraparietal sulcus (VIPS) to determine effects on performance in motion detection and number comparison tasks. Participants' reaction times and thresholds for perception of laterally presented coherent motion in random dot kinematograms increased significantly when the contralateral VIPS was stimulated in contrast to the interhemispheric sulcus (Experiment 1) and to the ipsilateral VIPS (Experiment 2). In number comparison tasks, participants compared the magnitude of the laterally presented numbers 1–9 with the number 5. Again, reaction times significantly increased when TMS was applied to the contralateral VIPS in contrast to control sites. The finding that VIPS-directed TMS results in impaired efficiency in both motion perception and number comparison suggests that these processes share a common neural substrate.


2012 ◽  
Vol 50 (7) ◽  
pp. 1672-1681 ◽  
Author(s):  
Elizabeth G. Conlon ◽  
Gry Lilleskaret ◽  
Craig M. Wright ◽  
Garry F. Power

2019 ◽  
Vol 13 ◽  
Author(s):  
Parvin Zarei Eskikand ◽  
Tatiana Kameneva ◽  
Anthony N. Burkitt ◽  
David B. Grayden ◽  
Michael R. Ibbotson

2006 ◽  
Vol 46 (4) ◽  
pp. 527-535 ◽  
Author(s):  
Bart Boets ◽  
Jan Wouters ◽  
Astrid van Wieringen ◽  
Pol Ghesquière

1995 ◽  
Vol 35 (10) ◽  
pp. 1483-1494 ◽  
Author(s):  
Piers Cornelissen ◽  
Alex Richardson ◽  
Alexandra Mason ◽  
Sue Fowler ◽  
John Stein

2011 ◽  
Vol 23 (9) ◽  
pp. 2494-2502 ◽  
Author(s):  
Barbara F. Händel ◽  
Thomas Haarmeier ◽  
Ole Jensen

Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.


1994 ◽  
Vol 11 (6) ◽  
pp. 1205-1220 ◽  
Author(s):  
Hugh R. Wilson ◽  
Jeounghoon Kim

AbstractA recent model for two-dimensional motion processing in MT has demonstrated that perceived direction can be accurately predicted by combining Fourier and non-Fourier component motion signals using a vector sum computation. The vector sum direction is computed by a neural network that weights Fourier and non-Fourier components by the cosine of the component direction relative to that of each pattern unit, after which competitive inhibition extracts the signals of the most active units. It is shown here that a minor modification of the connectivity in this network suffices to predict transitions from motion coherence to transparency under a wide range of circumstances. It is only necessary that the cosine weighting function and competitive inhibition be limited to directions within ± 120 deg of each pattern unit's preferred direction. This network responds by signaling one pattern direction for coherent motion but two distinct directions for transparent motion. Based on this, neural networks with properties of MT and MST neurons can automatically signal motion coherence or transparency. In addition, the model accurately predicts motion repulsion under transparency conditions.


Sign in / Sign up

Export Citation Format

Share Document