Galanin Inhibits Gut-Related Vagal Neurons in Rats

2004 ◽  
Vol 91 (5) ◽  
pp. 2330-2343 ◽  
Author(s):  
Zhenjun Tan ◽  
Ronald Fogel ◽  
Chunhui Jiang ◽  
Xueguo Zhang

Galanin plays an important role in the regulation of food intake, energy balance, and body weight. Many galanin-positive fibers as well as galanin-positive neurons were seen in the dorsal vagal complex, suggesting that galanin produces its effects by actions involving vagal neurons. In the present experiment, we used tract-tracing and neurophysiological techniques to evaluate the origin of the galaninergic fibers and the effect of galanin on neurons in the dorsal vagal complex. Our results reveal that the nucleus of the solitary tract is the major source of the galanin terminals in the dorsal vagal complex. In vivo experiments demonstrated that galanin inhibited the majority of gut-related neurons in the dorsal motor nucleus of the vagus. In vitro experiments demonstrated that galanin inhibited the majority of stomach-projecting neurons in the dorsal motor nucleus of the vagus by suppressing spontaneous activity and/or producing a fully reversible dose-dependent membrane hyperpolarization and outward current. The galanin-induced hyperpolarization and outward current persisted after synaptic input was blocked, suggesting that galanin acts directly on receptors of neurons in the dorsal motor nucleus of the vagus. The reversal potential induced by galanin was close to the potassium ion potentials of the Nernst equation and was prevented by the potassium channel blocker tetraethylammonium, indicating that the inhibitory effect of galanin was mediated by a potassium channel. These results indicate that the dorsal motor nucleus of the vagus is inhibited by galanin derived predominantly from neurons in the nucleus of the solitary tract projecting to the dorsal motor nucleus of the vagus nerve. Galanin is one of the neurotransmitters involved in the vago-vagal reflex.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jianhua Liu ◽  
Wenbin Fu ◽  
Wei Yi ◽  
Zhenhua Xu ◽  
Nenggui Xu

Acupuncture has a reflex regulation in gastrointestinal functions, which is characterized with segment. In the present study, the neural pathway of electroacupuncture (EA) at orofacial acupoints (ST2) on gastric myoelectric activity (GMA) in rats was investigated. The results indicated that EA at ST2 facilitated spike bursts of GMA, which is similar to EA at limbs and opposite to EA at abdomen. The excitatory effect was abolished by the transaction of infraorbital nerves, dorsal vagal complex lesion, and vagotomy, respectively. In addition, microinjection of L-glutamate into the nucleus of the solitary tract (NTS) attenuated the excitatory effect. All these data suggest that the dorsal vagal complex is involved in the reflex regulation of EA at orofacial acupoints on gastric functions and NTS-dorsal motor nucleus of the vagus (DMV) inhibitory connections may be essential for it.


1999 ◽  
Vol 16 (3) ◽  
pp. 557-570 ◽  
Author(s):  
HONGJING TAN ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Intracellular recording techniques were used to evaluate the effects of norepinephrine (NE) on the membrane properties of superficial layer (stratum griseum superficiale and stratum opticum) superior colliculus (SC) cells. Of the 207 cells tested, 44.4% (N = 92) were hyperpolarized by ≥3 mV and 8.7% (N = 18) were depolarized by ≥3 mV by application of NE. Hyperpolarization induced by NE was dose dependent (EC50 = 8.1 μM) and was associated with decreased input resistance and outward current which had a reversal potential of −94.0 mV. Depolarization was associated with a very slight rise in input resistance and had a reversal potential of −93.1 mV for the single cell tested. Pharmacologic experiments demonstrated that isoproterenol, dobutamine, and p-aminoclonidine all hyperpolarized SC cells. These results are consistent with the conclusion that NE-induced hyperpolarization of SC cells is mediated by both α2 and β1 adrenoceptors. The α1 adrenoceptor agonists, methoxamine and phenylephrine, depolarized 35% (6 of 17) of the SC cells tested by ≥3 mV. Most of the SC cells tested exhibited responses indicative of expression of more than one adrenoceptor. Application of p-aminoclonidine or dobutamine inhibited transsynaptic responses in SC cells evoked by electrical stimulation of optic tract axons. Inhibition of evoked responses by these agents was usually, but not invariably, associated with a hyperpolarization of the cell membrane and a reduction in depolarizing potentials evoked by application of glutamate. The present in vitro results are consistent with those of the companion in vivo study which suggested that NE-induced response suppression in superficial layer SC neurons was primarily postsynaptic and chiefly mediated by both α2 and β1 adrenoceptors.


1996 ◽  
Vol 75 (5) ◽  
pp. 2029-2035 ◽  
Author(s):  
R. A. Travagli ◽  
M. Wessendorf ◽  
J. T. Williams

1. The nucleus locus coeruleus (LC) is made up of noradrenergic cells all of which are hyperpolarized by opioids. Recent work has shown that the reversal potential of the opioid-induced current is more negative than the potassium equilibrium potential. The aim of the present study was to determine whether the extent of the dendritic field could contribute to the very negative opioid reversal potential. 2. Individual LC cells were labeled in the brain slice preparation. The number of dendrites found on cells in slices sectioned in the horizontal plane was greater than cells in coronal slices. However, the dimensions of the cell body slices from each plane were not significantly different. 3. The resting conductance of neurons from slices cut in the horizontal plane was significantly larger than in cells from coronal plane. 4. The amplitude of the outward current induced by [Met5]-enkephalin (ME) was larger in cells from horizontal slices and the reversal potential was more negative than that of cells in coronal slices. 5. The results show that the plane of section influences the membrane properties and opioid actions of LC neurons in vitro and suggest that these differences correlate with the numbers of dendrites. The results suggest that in vivo, in addition to intrinsic membrane properties and synaptic inputs, the structural makeup of the nucleus is an important factor in determining the activity.


1989 ◽  
Vol 256 (1) ◽  
pp. C155-C159 ◽  
Author(s):  
J. Nabekura ◽  
Y. Mizuno ◽  
Y. Oomura

Effects of somatostatin-14 (SRIF) on membrane electrical properties were studied in rat brain stem slice preparations maintained in vitro. SRIF hyperpolarized the resting membrane potential and decreased the input resistance of more than two-thirds of the 85 vagal motoneurons tested in the dorsal motor nucleus of the vagus. These effects persisted under synaptic blockade caused by perfusion with a solution containing tetrodotoxin or a Ca2+-free/high-Mg2+ solution and were dependent on the extracellular SRIF concentration (5 X 10(-8) to 1 X 10(-8) M). The Hill coefficient was estimated to be 2. The reversal potential of SRIF-induced hyperpolarization was affected by changing external K+ concentration. The results suggest that, in addition to its well-known peripheral action, SRIF may inhibit secretomotor functions of visceral organs by reducing vagal output in the central nervous system.


2019 ◽  
Author(s):  
Wei-Hua Chiu ◽  
Lora Kovacheva ◽  
Ruth E. Musgrove ◽  
Hadar Arien-Zakay ◽  
James B. Koprich ◽  
...  

AbstractNo disease modifying therapy is currently available for Parkinson’s disease (PD), the second most common neurodegenerative disease. The long non-motor prodromal phase of PD is a window of opportunity for early detection and intervention. However, we lack the pathophysiological understanding to develop selective biomarkers and interventions. By developing a mutant α-synuclein selective-overexpression mouse model of prodromal PD, we identified a cell-autonomous selective Kv4 channelopathy in dorsal motor nucleus of the vagus (DMV) neurons. This functional remodeling of intact DMV neurons leads to impaired pacemaker function in vitro and in vivo, which in turn reduces gastrointestinal motility which is a common, very early symptom of prodromal PD. We show for the first time a causal chain of events from α-synuclein via a biophysical dysfunction of specific neuronal populations to a clinically relevant prodromal symptom. These findings can facilitate the rational design of clinical biomarkers to identify people at risk for PD.


2017 ◽  
Vol 118 (5) ◽  
pp. 2833-2841 ◽  
Author(s):  
Carie R. Boychuk ◽  
Katalin C. Smith ◽  
Bret N. Smith

Chronic experimentally induced hyperglycemia augments subunit-specific γ-aminobutyric acid A (GABAA) receptor-mediated inhibition of parasympathetic preganglionic motor neurons in the dorsal motor nucleus of the vagus (DMV). However, the contribution of α1 or γ GABAA receptor subunits, which are ubiquitously expressed on central nervous system neurons, to this elevation in inhibitory tone have not been determined. This study investigated the effect of chronic hyperglycemia/hypoinsulinemia on α1- and γ-subunit-specific GABAA receptor-mediated inhibition using electrophysiological recordings in vitro and quantitative RT-PCR. DMV neurons from streptozotocin-treated mice demonstrated enhancement of both phasic and tonic inhibitory currents in response to application of the α1-subunit-selective GABAA receptor-positive allosteric modulator zolpidem. Responses to low concentrations of the GABAA receptor antagonist gabazine suggested an additional increased contribution of γ-subunit-containing receptors to tonic currents in DMV neurons. Consistent with the functional elevation in α1- and γ-subunit-dependent activity, transcription of both the α1- and γ2-subunits was increased in the dorsal vagal complex of streptozotocin-treated mice. Overall, these findings suggest an increased sensitivity to both zolpidem and gabazine after several days of hyperglycemia/hypoinsulinemia, which could contribute to altered parasympathetic output from DMV neurons in diabetes. NEW & NOTEWORTHY Glutamate and GABA signaling in the dorsal vagal complex is elevated after several days of chronic hyperglycemia in a mouse model of type 1 diabetes. We report persistently enhanced GABAA receptor-mediated responses to the somnolescent zolpidem in preganglionic vagal motor neurons. These results imply a broader impact of chronic hyperglycemia on central vagal function than previously appreciated and reinforce the hypothesis that diabetes effects in the brain can impact regulation of metabolic homeostasis.


2021 ◽  
Vol 7 (11) ◽  
pp. eabd3994
Author(s):  
Wei-Hua Chiu ◽  
Lora Kovacheva ◽  
Ruth E. Musgrove ◽  
Hadar Arien-Zakay ◽  
James B. Koprich ◽  
...  

No disease-modifying therapy is currently available for Parkinson’s disease (PD), the second most common neurodegenerative disease. The long nonmotor prodromal phase of PD is a window of opportunity for early detection and intervention. However, we lack the pathophysiological understanding to develop selective biomarkers and interventions. By using a mutant α-synuclein selective-overexpression mouse model of prodromal PD, we identified a cell-autonomous selective Kv4 channelopathy in dorsal motor nucleus of the vagus (DMV) neurons. This functional remodeling of intact DMV neurons leads to impaired pacemaker function in vitro and in vivo, which, in turn, reduces gastrointestinal motility, a common early symptom of prodromal PD. We identify a chain of events from α-synuclein via a biophysical dysfunction of a specific neuronal population to a clinically relevant prodromal symptom. These findings will facilitate the rational design of clinical biomarkers to identify people at risk for developing PD.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Christopher F. Spurney ◽  
Donald C. Ohuoha ◽  
Angela M. Murray ◽  
Joel E. Kleinman ◽  
Thomas M. Hyde

The distribution of 5-HT1A receptors in the subnuclei of the human caudal nucleus of solitary tract and adjacent structures in the dorsal vagal complex was studied using [3H]8-OH-DPAT, a highly selective 5-HT1A receptor agonist. The highest binding of the labeled ligand was found in the dorsal motor nucleus of the vagus, followed by the medial, intermediate, and subpostremal subnuclei of the nucleus of solitary tract. Previous animal studies suggest an important role for these structures in the regulation of visceral function, particularly for the gastrointestinal and cardiovascular systems. The results of this study suggest the possibility of an analogous role for 5-HT1A receptors in the regulation of these autonomic pathways in humans as well.


2012 ◽  
Vol 108 (7) ◽  
pp. 1884-1894 ◽  
Author(s):  
Lin Feng ◽  
Evgeny A. Sametsky ◽  
Alexander G. Gusev ◽  
Victor V. Uteshev

The caudal nucleus of the solitary tract (NTS) is the key integrating center of visceral sensory-motor signaling supporting autonomic homeostasis. Two key projections of this nucleus are the parabrachial nucleus (PbN) and the dorsal motor nucleus of the vagus (DMV). The PbN integrates and relays viscerosensory information primarily to the forebrain, supporting behavioral, emotional, and endocrine responses to visceral events, while the DMV contains parasympathetic preganglionic cholinergic motoneurons that support primarily gastrointestinal reflexes. Subsets of caudal NTS neurons express presynaptic and somatodendritic nicotinic acetylcholine receptors (nAChRs). However, the anatomical identification of nicotine-responsive caudal NTS neurons has not been determined. This study used in vivo and ex vivo fluorescent tracing and slice patch-clamp electrophysiological recordings from anatomically identified caudal NTS neurons to test the hypothesis that the responsiveness of these cells to nicotine correlates with the target of their axonal projections. The results demonstrate that the majority of glutamatergic terminals that synapse on PbN-projecting caudal NTS neurons are unaffected by nicotine. Moreover, only a fraction of these cells express somatodendritic nAChRs. In contrast, the majority of DMV-projecting caudal NTS neurons exhibit robust presynaptic and somatodendritic responsiveness to nicotine. However, PbN-projecting neurons also exhibit significantly lower background frequencies of glutamatergic miniature postsynaptic currents than DMV-projecting neurons. Therefore, presynaptic unresponsiveness to nicotine may result from deficient glutamatergic innervation of PbN-projecting neurons. Nevertheless, the caudal NTS contains function-specific subsets of cells with target-specific responsiveness to nicotine. These results may support development of therapeutic strategies for selective targeting of specific autonomic pathways and impaired autonomic homeostasis.


Sign in / Sign up

Export Citation Format

Share Document