Effects of TRPA1 Agonists Mustard Oil and Cinnamaldehyde on Lumbar Spinal Wide-Dynamic Range Neuronal Responses to Innocuous and Noxious Cutaneous Stimuli in Rats

2008 ◽  
Vol 99 (2) ◽  
pp. 415-425 ◽  
Author(s):  
Austin W. Merrill ◽  
Jason M. Cuellar ◽  
Justin H. Judd ◽  
Mirela Iodi Carstens ◽  
E. Carstens

Mustard oil [allyl isothiocyanate (AITC)] and cinnamaldehyde (CA), agonists of the ion channel TRPA1 expressed in sensory neurons, elicit a burning sensation and heat hyperalgesia. We tested whether these phenomena are reflected in the responses of lumbar spinal wide-dynamic range (WDR) neurons recorded in pentobarbital-anesthetized rats. Responses to electrical and graded mechanical and noxious thermal stimulation were tested before and after cutaneous application of AITC or CA. Repetitive application of AITC initially increased the firing rate of 52% of units followed by rapid desensitization that persisted when AITC was reapplied 30 min later. Responses to noxious thermal, but not mechanical, stimuli were significantly enhanced irrespective of whether the neuron was directly activated by AITC. Windup elicited by percutaneous or sciatic nerve electrical stimulation was significantly reduced post-AITC. These results indicate that AITC produced central inhibition and peripheral sensitization of heat nociceptors. CA did not directly excite WDR neurons, and significantly enhanced responses to noxious heat while not affecting windup or responses to skin cooling or mechanical stimulation, indicating a peripheral sensitization of heat nociceptors.

2009 ◽  
Vol 101 (4) ◽  
pp. 1742-1748 ◽  
Author(s):  
Carolyn M. Sawyer ◽  
Mirela Iodi Carstens ◽  
Christopher T. Simons ◽  
Jay Slack ◽  
T. Scott McCluskey ◽  
...  

The enigmatic sensation of tingle involves the activation of primary sensory neurons by hydroxy-α-sanshool, a tingly agent in Szechuan peppers, by inhibiting two-pore potassium channels. Central mechanisms mediating tingle sensation are unknown. We investigated whether a stable derivative of sanshool—isobutylalkenyl amide (IBA)—excites wide-dynamic range (WDR) spinal neurons that participate in transmission of chemesthetic information from the skin. In anesthetized rats, the majority of WDR and low-threshold units responded to intradermal injection of IBA in a dose-related manner over a >5-min time course and exhibited tachyphylaxis at higher concentrations (1 and 10%). Almost all WDR and low-threshold units additionally responded to the pungent agents mustard oil (allyl isothiocyanate) and/or capsaicin, prompting reclassification of the low-threshold cells as WDR. The results are discussed in terms of the functional role of WDR neurons in mediating tingle sensation.


1989 ◽  
Vol 62 (2) ◽  
pp. 437-449 ◽  
Author(s):  
W. Maixner ◽  
R. Dubner ◽  
D. R. Kenshalo ◽  
M. C. Bushnell ◽  
J. L. Oliveras

1. We examined the activity of thermally sensitive trigeminothalamic neurons and nonprojection neurons in the medullary dorsal horn (trigeminal nucleus caudalis) in three monkeys performing thermal and visual detection tasks. 2. An examination of neuronal stimulus-response functions, obtained during thermal-detection tasks in which noxious heat stimuli were applied to the face, indicated that wide-dynamic-range neurons (WDR, responsive to innocuous mechanical stimuli with greater responses to noxious mechanical stimuli) could be subclassified based on the slope values of linear regression lines. WDR1 neurons exhibited significantly greater sensitivity to noxious heat stimulation than WDR2 neurons or nociceptive-specific neurons (NS, responsive only to noxious stimuli). 3. In one behavioral task, the monkeys detected 1.0 degrees C increases in noxious heat from preceding noxious heat stimuli ranging from 44 to 48 degrees C. WDR1, WDR2, and NS neurons increased their discharge frequency as a function of the intensity of the first noxious heat temperature (T1) as well as the final temperature (T2). The responses of WDR1 neurons were greater than those produced by WDR2 or NS neurons across all the temperatures examined. The order of stimulus presentation affected the responses of WDR1 neurons to 1.0 degrees C increases in the noxious heat range but not those of WDR2 or NS neurons. 4. In a second behavioral task, the monkeys detected small increases in noxious heat (0.2-0.8 degrees C) from a first temperature of 46 degrees C. Although the responses of all three classes of neurons were monotonically related to stimulus intensity, WDR1 neurons exhibited greater sensitivity to small temperature increases than either WDR2 or NS neurons. 5. Subpopulations of all three classes of neurons exhibited responses that were independent of thermal stimulus parameters or sensory modality and that only occurred during the behavioral task. These task-related responses were time-locked to specific behavioral events associated with trial initiation and trial continuation. 6. These data provide evidence that a subpopulation of WDR neurons is the dorsal horn cell type most sensitive to small increases in noxious heat in the 45-49 degrees C temperature range and provides the most information about stimulus intensity. The findings support the view that nociceptive neurons have the capacity to precisely encode stimulus features in the noxious range and that WDR neurons are likely to participate in the monkeys' ability to perceive the intensity of such stimuli.


1993 ◽  
Vol 69 (3) ◽  
pp. 703-716 ◽  
Author(s):  
R. C. Coghill ◽  
D. J. Mayer ◽  
D. D. Price

1. To better characterize temporal and spatial mechanisms involved in the coding of prolonged nociceptive stimuli in the spinal cord, the responses of dorsal horn wide dynamic range (WDR) and nociceptive-specific (NS) neurons to prolonged, repetitive noxious heat stimuli (45–49 degrees C) were examined in unanesthetized, spinal cord transected rats. To relate these neuronal responses to conscious dimensions of pain, human subjects were presented with identical types of prolonged, repetitive stimuli, so that psychophysical ratings of pain intensity and pain unpleasantness could be compared with the magnitudes and temporal features of the responses of NS and WDR neurons. 2. WDR neurons exhibited high rates of impulse discharge throughout 45 min of repetitive nociceptive stimulation, with only partial reduction (31% decrease from peak rates) occurring after 2 min of stimulation. In sharp contrast, NS neurons stimulated under the same conditions displayed substantial reduction of firing (73% decrease from peak rates) after a brief, initial period of activity that occurred within 2 min after onset of stimulation. Psychophysical ratings of pain intensity and pain unpleasantness, like the responses of WDR neurons, did not decrease substantially from initial levels during 7 min of painful stimulation. Furthermore, these ratings remained at high levels during time periods where the impulse frequencies of NS neurons were only at 27% of maximal levels. 3. Graded nociceptive stimuli were employed to characterize the ability of WDR neurons to encode nociceptive intensity over long durations of repetitive stimulation and to delineate further the relationship between WDR and psychophysical responses. Both WDR discharge frequencies and psychophysical ratings of pain intensity and unpleasantness increased in a monotonic manner to graded increases in stimulus temperatures. 4. These results indicate that pain does not decrease substantially during the course of prolonged, repetitive nociceptive stimulation. The fact that the responses of NS neurons decline significantly, whereas both WDR and psychophysical responses do not, suggests that WDR neurons alone are sufficient to evoke both sensory intensity and affective responses to prolonged pain. Furthermore, because subjects could localize and qualitatively describe pain at times when responses of NS neurons were minimal, WDR neurons alone can encode some spatial and qualitative aspects of pain.


2016 ◽  
Vol 116 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Ryan Patel ◽  
Anthony H. Dickenson

Neuropathic pain represents a substantial clinical challenge; understanding the underlying neural mechanisms and back-translation of therapeutics could aid targeting of treatments more effectively. The ventral posterior thalamus (VP) is the major termination site for the spinothalamic tract and relays nociceptive activity to the somatosensory cortex; however, under neuropathic conditions, it is unclear how hyperexcitability of spinal neurons converges onto thalamic relays. This study aimed to identify neural substrates of hypersensitivity and the influence of pregabalin on central processing. In vivo electrophysiology was performed to record from VP wide dynamic range (WDR) and nociceptive-specific (NS) neurons in anesthetized spinal nerve-ligated (SNL), sham-operated, and naive rats. In neuropathic rats, WDR neurons had elevated evoked responses to low- and high-intensity punctate mechanical stimuli, dynamic brushing, and innocuous and noxious cooling, but less so to heat stimulation, of the receptive field. NS neurons in SNL rats also displayed increased responses to noxious punctate mechanical stimulation, dynamic brushing, noxious cooling, and noxious heat. Additionally, WDR, but not NS, neurons in SNL rats exhibited substantially higher rates of spontaneous firing, which may correlate with ongoing pain. The ratio of WDR-to-NS neurons was comparable between SNL and naive/sham groups, suggesting relatively few NS neurons gain sensitivity to low-intensity stimuli leading to a “WDR phenotype.” After neuropathy was induced, the proportion of cold-sensitive WDR and NS neurons increased, supporting the suggestion that changes in frequency-dependent firing and population coding underlie cold hypersensitivity. In SNL rats, pregabalin inhibited mechanical and heat responses but not cold-evoked or elevated spontaneous activity.


2011 ◽  
Vol 106 (3) ◽  
pp. 1078-1088 ◽  
Author(s):  
Amanda Klein ◽  
Mirela Iodi Carstens ◽  
E. Carstens

In the present study, we investigated whether intradermal cheek injection of pruritogens or algogens differentially elicits hindlimb scratches or forelimb wipes in Sprague-Dawley rats, as recently reported in mice. We also investigated responses of primary sensory trigeminal ganglion (TG) and dorsal root ganglion (DRG) cells, as well as second-order neurons in trigeminal subnucleus caudalis (Vc), to pruritic and algesic stimuli. 5-HT was the most effective chemical to elicit dose-dependent bouts of hindlimb scratches directed to the cheek, with significantly less forelimb wiping, consistent with itch. Chloroquine also elicited significant scratching but not wiping. Allyl isothiocyanate (AITC; mustard oil) elicited dose-dependent wiping with no significant scratching. Capsaicin elicited equivalent numbers of scratch bouts and wipes, suggesting a mixed itch and pain sensation. By calcium imaging, ∼6% of cultured TG and DRG cells responded to 5-HT. The majority of 5-HT-sensitive cells also responded to chloroquine, AITC, and/or capsaicin, and one-third responded to histamine. Using a chemical search strategy, we identified single units in Vc that responded to intradermal cheek injection of 5-HT. Most were wide dynamic range (WDR) or nociceptive specific (NS), and a few were mechanically insensitive. The large majority additionally responded to AITC and/or capsaicin and thus were not pruritogen selective. These results suggest that primary and second-order neurons responsive to pruritogens and algogens may utilize a population coding mechanism to distinguish between itch and pain, sensations that are behaviorally manifested by distinct hindlimb scratching and forelimb wiping responses.


2015 ◽  
Vol 114 (4) ◽  
pp. 2528-2534 ◽  
Author(s):  
T. Akiyama ◽  
M. Nagamine ◽  
A. Davoodi ◽  
M. Iodi Carstens ◽  
F. Cevikbas ◽  
...  

Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml−1·min−1), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans.


2014 ◽  
Vol 112 (9) ◽  
pp. 2283-2289 ◽  
Author(s):  
Tasuku Akiyama ◽  
Mitsutoshi Tominaga ◽  
Kenji Takamori ◽  
Mirela Iodi Carstens ◽  
E. Carstens

Intrathecal administration of the neurotoxin bombesin-saporin reduces or abolishes pruritogen-evoked scratching behavior. We investigated whether spinal neurons that respond to intradermal (ID) injection of pruritogens also respond to spinal superfusion of bombesin and vice versa. Single-unit recordings were made from superficial lumbar spinal dorsal horn neurons in anesthetized mice. We identified neurons with three search strategies: 1) ID injection of the nonhistaminergic itch mediator chloroquine, 2) spinal superfusion of bombesin, and 3) noxious pinch. All units were tested with an array of itch mediators (chloroquine, histamine, SLIGRL, BAM8-22), algogens [capsaicin, allyl isothiocyanate (AITC)], and physical stimuli (brush, pinch, noxious heat, cooling) applied to the hindlimb receptive field. The vast majority of chloroquine-responsive units also responded to bombesin. Of 26 chloroquine-sensitive units tested, most responded to SLIGRL, half responded to histamine and/or BAM8-22, and most responded to capsaicin and/or AITC as well as noxious thermal and mechanical stimuli. Of 29 bombesin-responsive units, a large majority also responded to other itch mediators as well as AITC, capsaicin, and noxious thermal and mechanical stimuli. Responses to successive applications of bombesin exhibited tachyphylaxis. In contrast, of 36 units responsive to noxious pinch, the majority (67%) did not respond to ID chloroquine or spinal bombesin. It is suggested that chloroquine- and bombesin-sensitive spinal neurons signal itch from the skin.


1992 ◽  
Vol 68 (2) ◽  
pp. 392-396 ◽  
Author(s):  
J. X. Hao ◽  
X. J. Xu ◽  
Y. X. Yu ◽  
A. Seiger ◽  
Z. Wiesenfeld-Hallin

1. In the companion paper, we described a state of hypersensitivity that developed in dorsal horn wide dynamic range (WDR) neurons in rats after transient spinal cord ischemia. Thus the WDR neurons exhibited lower threshold and increased responses to low-intensity mechanical stimuli. The response pattern of these neurons to suprathreshold electrical stimulation was also changed. Notably, the response to A-fiber input was increased. No change in response to thermal stimulation was found before and after spinal cord ischemia. 2. In normal rats, the gamma-aminobutyric acid (GABA)B agonist baclofen (0.1 mg/kg ip) administered 1-3 h before neuronal recording suppressed the responses of WDR neurons to high-intensity mechanical pressure without influencing the threshold and the responses to lower-intensity stimuli. 3. In allodynic rats, similar pretreatment with baclofen totally reversed the hypersensitivity of the WDR neurons to mechanical stimuli and normalized the response pattern of neurons to electrical stimulation. 4. The GABAA receptor agonist muscimol (1 mg/kg ip) did not influence the response of WDR neurons in either normal or allodynic animals. 5. The present results demonstrated that the GABAB agonist baclofen is effective in reversing the hypersensitivity of dorsal horn WDR neurons to low-intensity mechanical stimulation after transient spinal cord ischemia, indicating that dysfunction of the GABAergic inhibitory system may be responsible for the development of neuronal hypersensitivity. 6. It is suggested that GABAergic interneurons exert a tonic presynaptic inhibitory control, through baclofen-sensitive B-type GABA receptors, on input from low-threshold mechanical afferents, and that disruption of this control may result in painful reaction to innocuous stimuli (allodynia).


1999 ◽  
Vol 81 (2) ◽  
pp. 575-583 ◽  
Author(s):  
Andrea G. Hohmann ◽  
Kang Tsou ◽  
J. Michael Walker

Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. The effects of cannabinoid agonists on noxious heat-evoked firing of 62 spinal wide dynamic range (WDR) neurons were examined in urethan-anesthetized rats (1 cell/animal). Noxious thermal stimulation was applied with a Peltier device to the receptive fields in the ipsilateral hindpaw of isolated WDR neurons. To assess the site of action, cannabinoids were administered systemically in intact and spinally transected rats and intraventricularly. Both the aminoalkylindole cannabinoid WIN55,212-2 (125 μg/kg iv) and the bicyclic cannabinoid CP55,940 (125 μg/kg iv) suppressed noxious heat-evoked activity. Responses evoked by mild pressure in nonnociceptive neurons were not altered by CP55,940 (125 μg/kg iv), consistent with previous observations with another cannabinoid agonist, WIN55,212-2. The cannabinoid induced-suppression of noxious heat-evoked activity was blocked by pretreatment with SR141716A (1 mg/kg iv), a competitive antagonist for central cannabinoid CB1 receptors. By contrast, intravenous administration of either vehicle or the receptor-inactive enantiomer WIN55,212-3 (125 μg/kg) failed to alter noxious heat-evoked activity. The suppression of noxious heat-evoked activity induced by WIN55,212-2 in the lumbar dorsal horn of intact animals was markedly attenuated in spinal rats. Moreover, intraventricular administration of WIN55,212-2 suppressed noxious heat-evoked activity in spinal WDR neurons. By contrast, both vehicle and enantiomer were inactive. These findings suggest that cannabinoids selectively modulate the activity of nociceptive neurons in the spinal dorsal horn by actions at CB1 receptors. This modulation represents a suppression of pain neurotransmission because the inhibitory effects are selective for pain-sensitive neurons and are observed with different modalities of noxious stimulation. The data also provide converging lines of evidence for a role for descending antinociceptive mechanisms in cannabinoid modulation of spinal nociceptive processing.


2000 ◽  
Vol 84 (2) ◽  
pp. 616-627 ◽  
Author(s):  
Steven L. Jinks ◽  
E. Carstens

We have investigated whether neurons in superficial laminae of the spinal dorsal horn respond to intracutaneous (ic) delivery of histamine and other irritant chemicals, and thus might be involved in signaling sensations of itch or chemogenic pain. Single-unit recordings were made from superficial lumbar dorsal horn neurons in pentobarbital sodium–anesthetized rats. Chemoresponsive units were identified using ic microinjection of histamine (3%, 1 μl) into the hindpaw as a search stimulus. All superficial units so identified [9 nociceptive-specific (NS), 26 wide-dynamic-range (WDR)] responded to subsequent ic histamine. A comparison group of histamine-responsive deep dorsal horn neurons ( n = 16) was similarly identified. The mean histamine-evoked discharge decayed to 50% of the maximal rate significantly more slowly for the superficial (92.2 s ± 65.5, mean ± SD) compared with deep dorsal horn neurons (28.2 s ± 11.6). In addition to responding to histamine, most superficial dorsal horn neurons were also excited by ic nicotine (22/25 units), capsaicin (21/22), topical mustard oil (5/6), noxious heat (26/30), and noxious and/or innocuous mechanical stimuli (except for 1 unit that did not have a mechanosensitive receptive field). Application of a brief noxious heat stimulus during the response to ic histamine evoked an additive response in all but two cases, followed by transient depression of firing in 11/20 units. Intrathecal (IT) administration of morphine had mixed effects on superficial dorsal horn neuronal responses to ic histamine and noxious heat. Low morphine concentrations (100 nM to 1 μM) facilitated histamine-evoked responses (to >130% of control) in 9/24 units, depressed the responses (by >70%) in 11/24, and had no effect in 4. Naloxone reversed morphine-induced effects in some but not all cases. A higher morphine concentration (10 μM) had a largely depressant, naloxone-reversible effect on histamine responses. Responses of the same superficial neurons to noxious heat were facilitated (15/25), reduced (8/25), or unaffected (2/25) by low morphine concentrations and were depressed by the higher morphine concentration. In contrast, deep dorsal horn neuronal responses to both histamine and noxious heat were primarily depressed by low concentrations of morphine in a naloxone-reversible manner. These results indicate that superficial dorsal horn neurons respond to both pruritic and algesic chemical stimuli and thus might participate in transmitting sensations of itch and/or chemogenic pain. The facilitation of superficial neuronal responses to histamine by low concentrations of morphine, coupled with inhibition of deep dorsal horn neurons, might underlie the development of pruritis that is often observed after epidural morphine.


Sign in / Sign up

Export Citation Format

Share Document